インストラクショナルデザイン

— 教えることの科学と技術 —

Instructional Design : The Art and Science of Instruction

【2012年版】

向 後 千 春

(C) 2012 KogoLab
はじめに

インストラクショナルデザインとは、「教えることの科学と技術」です。
このテキストを手にしている大部分の人は、「教える」ということを職業にしている人ではないかもしれませんが、たとえ、そういう人であっても「教えることの科学と技術」を学ぶ必要があるのでしょうか。答えは「Yes」です。
教えることを職業にしている代表は学校の教員ですが、教員でなければ教えられないということはありません。それどころか、仕事や日常生活の中では、私たちみんながいやすく教える仕事をしなくてはならないのです。たとえば、子どもに勉強を教える、職場で新人を教える、おじいちゃんにケーキの使い方を教えるなどなど、そして、うまく教えることができたら、相手は喜び、仕事はかどり、教えてくれた人もハッピーになることでしょう。
インストラクショナルデザインは、私たちが誰かに何かを教えなければならないとき、「効率のよい上手な教え方」を提供してくれます。単なる経験則や思い込みに近い人生訓ではなく、科学的に良い教え方を追求するのがインストラクショナルデザインという学問です。
このテキストでは、古典的で正統的なインストラクショナルデザインの哲学、理論、そして実践について説明しています。この本を読めば、あなたは自分の教え方に自信を持つことができるでしょう。そして、実際に教えていく中で、自分の教え方を改善することができるようになるでしょう。

2012年3月31日　向後千春

謝辞
このテキストは、早稲田大学人間科学部で通学生及びeスクール生向けに開講されている「インストラクショナルデザイン」のために書かれたものです。2012年度版は、2010年度版を手直ししたもので、最終チェックには、石川奈保子さん(TA)と小林秀明さん（教育コーチ）の助けを得ました。2010年度版は、2009年度まで使われたテキストの章立てを組み換え、内容も改訂しました。2009年度版のテキストの作成にあたっては、2007年度のeスクール受講生である春の人たちの協力を得ました。武者久美子さん、菊地真実さん、山下久美さん、山田雅敏さん、匿名希望さん、以上の方々は、授業ビデオを視聴してその内容を文字にしてくれました。記して感謝します。

内容についての連絡先
この本に書かれている内容について疑問や間違いがありましたら、メールでお知らせください。アドレスは：kogo@waseda.jp です。
もくじ

1. インストラクショナルデザインとは何か .. 1
 1.0 プロローグ ... 1
 1.1 IDの考え方 .. 2
 1.2 IDの基本前提 .. 7
 1.3 IDの基礎理論 .. 14
 1.4 IDの応用領域 .. 16
 1.5 エピローグ .. 19
文献紹介 ... 20
■ホームワーク1 ... 20

2. 運動技能のインストラクション ... 22
 2.0 プロローグ ... 22
 2.1 技能の分類 .. 23
 2.2 スモールステップの原則 ... 25
 2.3 理論的土台：行動分析学 .. 30
 2.4 続けさせる技術 .. 35
 2.5 やめさせる技術 .. 39
 2.6 応用デザイン .. 42
 2.7 エピローグ .. 43
文献紹介 ... 44
■ホームワーク2 ... 46

3. 認知技能のインストラクション ... 47
 3.0 プロローグ ... 47
 3.1 認知技能とは .. 48
 3.2 説明の技術 .. 48
 3.3 理論的土台：認知心理学 .. 53
 3.4 認知を変える技術 .. 56
 3.5 応用デザイン .. 64
 3.6 エピローグ .. 65
文献紹介 ... 66
■ホームワーク3 ... 67

4. 態度のインストラクション ... 68
 4.0 プロローグ ... 68
 4.1 態度とは何か .. 69
 4.2 態度を変える技術 .. 70
 4.3 理論的土台：状況的学習論 .. 72
 4.4 正統的周辺参加 .. 74
 4.5 状況的学習論から教えることへ 76
 4.6 応用デザイン .. 79
 4.7 エピローグ .. 82
文献紹介 ... 83
■ホームワーク4 ... 84
5. ニーズ分析とゴール設定 ...85
 5.0 プロローグ ..85
 5.1 コースの設計 .. 86
 5.2 ニーズ分析 .. 87
 5.3 ゴール設定 .. 89
 5.4 学習者分析 .. 91
 5.5 コンテキスト分析 .. 93
 5.6 事前・事後テスト .. 94
 5.7 エピローグ .. 95
文献紹介 ... 96
■ホームワーク5 ... 96

6. リソース，活動，フィードバックの設計 ...98
 6.0 プロローグ .. 98
 6.1 導入の設計 .. 99
 6.2 リソースの設計 .. 100
 6.3 活動のデザイン .. 101
 6.4 フィードバックのデザイン .. 105
 6.5 エピローグ .. 108
■ホームワーク6 ... 109

7. 評価の設計 ..111
 7.0 プロローグ .. 111
 7.1 IDにおける評価 .. 112
 7.2 学習成果の測定 .. 113
 7.3 学習体験の測定 .. 116
 7.4 態度の変化の測定 ... 117
 7.5 エピローグ .. 118
■ホームワーク7 ... 119
1. インストラクショナルデザインとは何か

1.0 プロローグ

——アイダさん、こんにちは。
はい、こんにちは、え〜とキミは……
——あ、ヤマモトと申します。入社して3年目です。
そうだ、どう？ 仕事はおもしろい？
——実は、仕事のことでご相談が。
はいはい。
——アイダさんは、「研修」のエキスパートだと聞きました。
まあ、研修だけじゃなくて、「教えること」全般についての専門家だけどね。
——私は今、入社してきた新人の研修を担当しているんです。
それは大変だね。
——そうなんですね。その研修があまりうまくいっていないんです。
まあ、「教えること」は難しいことだよ。そもそも学校で教えてくれないし。
——本当に教えるのは難しいです。そうだ、そういったら、教え方を教えてくれる科目って
大学にもなかったですか。
そうだね、教職科目というのはあるけど、教員になろうという人でなければ履修しないだろう。
——アイダさんは、教えること全般の専門家だと言いましたね。
そうだよ。
——それをどこで勉強したんですか？ 「教えること」を教える科目なんて大学にもな
いのに。
いや、それがあるんだね。
——え？ あるんですか？ 教職科目じゃなくて？
そうだよ、あるんだよ。
——そんな科目があるんですか？ 何ていえんですかそれは？
インストラクショナルデザインというのさ、Instructional Design、略してID。
——インストラクショナルデザインですか。初めて聞きました。それを勉強すれば、新
人の研修をうまくやることができるでしょうか。
たぶんね！
1.1 IDの考え方

教えること・学ぶことは日常行為

私たち人間は、生まれてから死ぬ直前まで、常に何かを学んでいる。誰かに教えられなくても、何かを学んでいる。その一方で、誰かに教えられて学ぶこともまた日常的な行為である。

「教える」というとすぐに学校を考える。しかし、実際には、教えるという行為は学校以外でも日常的に行われている。

たとえば、自分の子どもに自転車の乗り方を教える。友だちに料理の作り方を教える。職場で先輩が後輩に仕事の仕方やコツを教える。おじいちゃんにケータイのメールの打ち方を教える。このように、教えるという行為は学校以外で限られていない。むしろ、学校以外の場所で教えたり、教えられたりしていることが多いのである。

教えるという行為は、教員の独占的ではない。私たちは、より良く生きていくために、常に誰かから何かを学び、誰かに何かを教えている。教えることは、会話をするくらい自然で、日常的な行為である。

しかし、このように教える機会や必要性はたくさんあるにもかかわらず、私たちは教え方を学んでこなかった。学校では常に、生徒に学習としてさまざまな科目を教えてきた。しかし、教え方は教えられていた。教えるという行為は学校以外で限られてこなかった。学校のどこを探しても、「上手な教え方」が見つかった。

これは、不都合なことではないだろうか。生きていく上で、また働いていく上で、必要とされている「上手な教え方」という内容が、学校では教えられていないのだ。

教えることを研究対象にする

インストラクショナルデザインという学問はまさにこの領域を扱う。何かをうまく教えるための技術と科学を求む学問がインストラクショナルデザインである。

インストラクショナルデザインは、教えるという行為とその成果を研究対象とする。そして、その研究成果として上手な教え方を実行するためのモデルと理論を提出しようとする。

インストラクショナルデザインのモデルと理論を利用することで、より良い教え方が実践できれば、インストラクショナルデザインの目的が達成されたことになる。
図1.1 教える・教えられる

社会をうまく回すための原動力

仕事をしていれば、教えるということを必ずしなければならない。どんな専門であろうか、どんな職種であろうか、後輩を育て、弟子を育てることをしなければ、そこで途絶えてしまう。もしがんらからの組織やコミュニティをその伝統と文化とともに存続させようと思うなら、教えるという仕事は必ずついて回る。

しかし、教える方法について、学校の（あまりおもしろくない）授業だけしかモデルとして知らなければ、上手な教え方できないのは当然だ。だから、上司が部下に何かを教えるときに、部下は「要領を得ない教え方だなあ」と思、上司は「飲み込むの悪い部下だなあ」とイラライラする。また、研修を実施すれば、研修の受講生は「何を伝えたいのか全然わからない。時間が無駄だ」と思、研修講師は「ガヤガヤして、私の話を全然聞いていない」と嘆く。このようにして、時間が無駄になるだけではなく、教える人と教えられる人との間に不信感さえ生まれてくる。

もし、すべての人がインストラクショナルデザインの素養を持って、上手な教え方を習得しているとすれば、社会はもっと良くなるだろう。たとえば、個人が体得した技能やコツが、周りの人によく伝えられれば、組織全体の効率や生産性が上がるだろう。たとえば、先輩が後輩に上手に指導できれば、後輩はすばやく技能や知識を習得していくことができ、そして、先輩はそのうまい教え方によって尊敬されるだろう。

このように、個人個人が上手な教え方を知っていることが、社会全体をうまく回すための原動力となるのである。同時に、一人ひとりが「自分が他者や社会のために役に立つことができる」という意識を持つことで、生きがいのある幸福な社会を生み出すことだろう。

インストラクションとコース

教えるという行為が行われたら、それをインストラクションと呼ぶことにしよう。教えることは、「教育」と呼ばれたり、「授業」と呼ばれたり、「研修」と呼ばれたりするが、これらの用語は、先生や教師、教員が教えることを暗示している。しかし、すでに述べたように、教えるという行為は、教師の専売ではなく、誰もが日常的
進行ものである。したがって，ここでは「教育」や「授業」や「研修」という言葉ではなく，（ちょっと長いけれども）「インストラクション」と呼ぶことにする。
インストラクションは一区切りの教える行為である。それは，10分であったり，あるいは1時間かかったりするけれども，教える行為のひと続きの単位である。
それに対して，インストラクションが複数組み合わせられたものを「コース」と呼ぶことにする。コースは複数のインストラクションを組み合わせることで，長期的に特定の知識や技能を学び手に身につけさせることを目標として設計されたものである。コースは，インストラクションの単なる集合ではなく，含んでいるインストラクションすべてに一貫性，あるいは共通した目標がある。

図1.2 コースとインストラクション（そしてコンテキスト）

つけくわえれば，あるコースが設定されたまわりの状況をコンテキスト（文脈）と呼んでおく。たとえば，そのコースは，学び手が自分で決心して参加したものなのか，あるいは，半ば強制的に義務づけられて参加しなくてはならなかったものなのかによって，学び手のそのコースへの意気込みや思いはまったく異なったものになるだろう，その結果として，学習の成果はまったく違ってくるだろう。
このように，コース自体がまったく同じ内容であったとしても，それが置かれるコンテキストによってコースの効果そのものが変わってくる。したがって，コンテキストを考慮に入れないわけにはいかない。

意図的な介入
インストラクションはコミュニケーションの一部である。コミュニケーションとは，ある人が別の人に特定の内容を伝えるということである。もし，そのコミュニケーションが，ある人が意図的に，そのことを知りたいと思っている別の人にそれを伝えるものであった場合，それをインストラクションと呼ぶ。つまり，「意図的な介入」があれば，それはインストラクションとなる。
一方，ある人が意図せずに，結果として別の人に何かを伝えてしまったという場合もインストラクションではない。その人は結果として何かを学んだかもしれないので，それは意図されなかったものなので，インストラクションとは呼ばない。
ストラクションなしに人が学ぶことはよく起こるので、ここは注意が必要である。誰かが何かを学んだとしても、必ずしもそこにインストラクションがあるとは限らない。「あの人が学んだのは、Aさんのおかげである」と言ったとしても、Aさんが意図的な介入をしていなければ、Aさんはインストラクションをしたとは言えない。

インストラクションの技術は、他の人に介入してその人を変えるための技術と共通点多多い。他の人に介入してその人を変えることを専門的に行うのが、カウンセリングや心理療法である。したがって、インストラクションの技術とカウンセリングや心理療法の技術には共通点多多い。

メディア

インストラクションは人対人の対面形式によって行われるだけではない。たとえば、このテキストのように、特定の意図をもって、学び手に何かを身につけさせようとするものであれば、テキストもまたインストラクションである。

インストラクションはメディアによって伝えられる。人対人であれば、肉声や表情や身振りなどが、メディアである。また、このようなテキストであれば、印刷物（あるいはパソコンのスクリーン）という形態がメディアである。あるいは、人対人であっても、教師の側が動画に収録され、インターネットで会員に配信される場合は、動画というメディア上でインストラクションが行われる。

デザイン

デザインとは、原理と見かけをつなくことである。原理とは、理論と言い換えられるもので、見かけの裏で動いている抽象的な枠組みである。見かけとは、実働と言い換えられるもので、現にそこで見えて、動いているものである。原理を見かけに変換することをデザイン（あるいは設計）と呼ぶ。

インストラクショナルデザインとは、教えること・学ぶことの原理（理論）を、特定の見かけ（実働するもの）に変換することであるといえる。

図1.3 デザインするということ

注意すべき点は、ひとつの原理から複数の見かけが設計できるということである。また逆に、複数の原理を組み合わせることで、ひとつの見かけを設計することもできる。良いインストラクションをデザインするためには、原理を知ることと、実働の現
インストラクショナルデザインは何をデザインするのか

インストラクショナルデザインは、教え手がどう教えればよいのかということだけを対象としているわけではない。むしろ、教え手がそこになくても、インストラクションが成立するようなシステム全体をデザインしようとするのである。その意味で、教え手が壇上に立ち、学習活動の中心にいようとすることを排除する。主役は教え手ではなく、学び手なのだ。

インストラクショナルデザインは、学ぶためのニーズを同定し、具体的な学習成果をゴールとして設定するところから始まる。その上で、学習のきっかけとなるようなレクチャー、テキスト、ビデオなどのリソースを用意し、学び手が行う学習活動をデザインし、それに対してどのようなフィードバックをすればよいのかを考える。このようなシステム全体をインストラクションあるいはコースとしてデザインするのである。そのシステムの中では、教え手がレクチャーをするとしても、それはあくまでも「リソースの1つ」という位置づけである。リソースが主役のようにふるまうことはない。

図1.4 全体をデザインする
1.2 IDの基本前提

インストラクショナルデザインの基本前提は次の3点に集約できる。

1. 学習は多くの変数に左右される
2. にもかかわらず、効果的に学習を支援する方法はある
3. そして、その支援の方法は常に改善できる

もちろん、これ以外の基本前提を取りることもできる。たとえば「何が学習されるかは、何がどのように教えられるかによって決定される」というような「決定論」的な立場を前提とすることもできる。どのようなことを学問の基本前提に置くかということは、それぞれの人が自由に決められる。

しかし、インストラクショナルデザインを研究している人間では、このような決定論を取る人は少数派だろう。上に挙げた3つの基本前提は、インストラクショナルデザインに関わっている人たちが共有している前提である。前提が共有されているならば、議論は常にこの上に立ってスタートすることができる。

以下に、これら3つの基本前提について説明しよう。

前提1：学習は多くの変数に左右される

私たちが何かを学ぶとき、それは数多くの変数に左右される。端的には、誰も何も教えようとしていないのに、深い学習が起こったりする。その一方で、ある人が一生懸命何かを教えようとがんばっているにもかかわらず、何の学習も起こらないということもよくある。ある人の教え方がとても上手だというので、その人について学んでみたらけれども、まったく合わなかったということもある。

自分自身が何かを学んだときに、それがどういう状況で起こったのかを振り返ってみよう。教え方がうまく納かかったからなのか、そもそもその内容に興味があった学ぶことに意欲だったからなのか、自分自身の体調が良かったからなのか、たまたまそういう気分だったからなのか、一緒に学んだ人たちの釀し出す雰囲気に乗せられたからなのか、我慢がとても熱心だったからなのか、いったい何が決め手だったのか、それは簡単には特定できない。

心理療法の効果の要因

Millerほか(2000)による心理療法の効果を占う要因に関する研究をレビューして、効果の要因はおおよそ次のよう割合で規定されることを主張している。心理療法の効果は、1. 治療外要因(40%)、2. 治療関係要因(30%)、3. 期待、希望、プラセボ要因(15%)、4. モデルや技法要因(15%)である。

注1 Miller, S. D., Hubble, M. A., Duncan, L. (2000) 心理療法・その基礎なるもの一術系から抜け出すための有用要因, 金剛出版
つまり、心理療法が効果を発揮してクライエントが治るときに、それは、クライエント自身が自然治癒すること（治療外要因）や、クライエントとセラピストの人間関係（治療関係要因）に70%の原因を求めることができる。さらに、クライエントがともと持っている治癒への期待やプラセボ（それを信じることで治癒の効果が生じてしまう）とも15%の要因となっている。一方、治療そのものの効果（モデルや技法要因）は、残りのわずか15%にすぎないと見解もされている。

さて、セラピストとクライエントの関係を、教え手と学び手の関係にあてはめてみよう。両者は、セラピスト=教え手が、クライエント=学び手に対して何らかの介入をすることで、クライエント=学び手に何らかの変化を起こそうとするという点で、相似形である。

これを、教育とその学習成果を占う要因に適用してみると、1. 教育外要因（学び手が元々持っていた学習能力）、2. 教育関係要因（受容・共感、思いやり、はげましといった学び手と教え手の関係）、3. 期待・希望、プラセボ要因（これは古くから「ビッグマリオン効果」として知られている）、そして、4. モデルや技法要因に分類できるだろう。

そして、このそれぞれにMillerらが予測した要因の重みづけを当てはめれば、学び手が元々持っていた学習能力によって40%の学習成果が説明され、学び手と教え手の人間関係によって30%が説明される。さらに外からかけられる期待によるビッグマリオン効果の15%を加えれば、以上で全体の85%が説明される。そして、残りのわずか15%が、教え方そのものの効果なのである。

![図1.5 学習成果の要因の割合（たぶんこんな感じ）](image)

Millerたちの見解が、私たちの経験に照らして妥当かどうかを考えてみよう。私たちが、何かを学んだと実感するとき、それが誰から教えられてそうになったということがどれほどの割合あるだろうか、一方で、誰から教えることなく自分で気がついて何かを学んだり、あるいは、相手が意図的に教えようとしている関係ではなく、ただ
会話したり、経験を交換したりしているときに何かを学ぶということがどれほどの割合あるだろうか、こうしたことを振り返ってみると、Millerたちが言うように、意図的な教育によって私たちは本当に学ぶということは少ないのかもしれない。

以上の考察から言えることは、学習成果を規定する要因は複数あり、その重要な要因は、教える行動の外側にある要因であり、教え方がコントロールできないところにあることである。

もし、教え方そのものの効果がたった15%の重みしかないとしたら、それを研究し、改善していくことに意味があるのだろうか？

はっきりとそう言わないまでも、意味がないと考えている人は多い。たとえば、決まりきった手順でしか教えることはしないし、もし学習成果がでなかったとしても、それは学び手の責任であり、彼らが真剣に努力しなかったからだと結論づける人たちがいる。彼らが、教え方そのものを軽視しているのは明らかである。

教えることは全体的なシステムである

多くの変数の中で、15%の重みしかない教え方を研究し、改善していこうと考えるのは、教えること・学ぶことが、教え手と学び手の両者によって作られる全体的なシステムとして考えられるからである。教え手だけでも、学び手だけでも、教えることは成立しない。教え手と学び手、そして教え方、それを取り巻くコンテキストそれらが一体となって、教えること・学ぶことが成立する。そのシステムの中で、教え方の要因がたとえ15%の重みしか持たなくても、そこが変わることによって「システム全体」が変わる可能性があるからである。

この考え方を、システムズアプローチと呼ぶ。この考え方は、すでに現代の様々な学問領域で採用されている。システムズアプローチの考えは「物事の動きをひとつのシステムとして見よう」ということである。システムズアプローチで考えるシステムとは「部分が全体を規定し、全体が部分を規定して、互いに切り離すことができないような全体」ということになる。

図1.6 システムズアプローチ：どこかを変えると全体が変わる

教えることは、教え手と学び手の両者が必要で、どちらかが欠けても成立しないシステムになっている。たとえば、教室での授業には、先生と生徒という構成要素があ
この2つの組み合わせを単純に足せば全体ができるわけではない。この組み合わせから何らかの新しい性質（たとえばクラスの雰囲気）が現れ、全体が構成される。さらに、全体が構成されると、今度はクラスの雰囲気が一人一人の生徒に何らか的作用を及ぼしていく、単純に良い先生がいれば、教える・学ぶ関係が良くなるのかといえば、そんなことはないし、悪い生徒がいても必ずしも学級崩壊につながらすわけではない。先生と生徒の関係、生徒と生徒の関係、取り巻く環境、どういった文脈で、お互いを規定しあっているかなどによって、全体がうまくいくか、あるいはうまくいかないかが決まってくる。これは、システムズアプローチの考え方を採用しなければ検討できない現象である。

このシステムズアプローチの考えに立てば、15%の重みしかない教え方を研究し、改善していくということに意味がある。まさにその部分こそが研究者と実践者が挑戦できる部分であり、教えるというシステム全体を変えるためのチオになるからである。

前提2：効果的に学習を支援する方法はある
インストラクショナルデザインの2番目の前提は、達成しようとする学習成果が特定できれば、それに適したタイプのインストラクションがあるということだ。これは、逆に言えれば、どういった学習成果を達成したいのかということが明確にならない限り、その学習を支援することはできないということになる。達成したい学習成果のことを「ゴール」と呼ぶ。インストラクションのデザインはゴールを設定しなければスタートできない。

ゴールベースのデザイン
ある人がインストラクションを受けて、特定のことができるようになることをゴールと呼ぶ。インストラクションはこのゴールをベースとしてデザインされる。そのデザインが適切だったかどうかは、すべてゴールが達成されたかどうかということによって判定されることになる。このことを「ゴールベース」と呼ぶ。
それは当然のことではないかという人もいるかもしれない。しかし、ゴールが達成されたかどうかにあまりこだわらない「教育」も現実にはある。つまり、教える人の意気込みや働きかけが重要だという考え方だ。

成功的教育観と意図的教育観
沼野注1は、結果として学習が起こったかどうかにかかわらず「働きかける」ことを重視する考え方を「意図的教育観」と呼んだ。これに対して、学習者が生じたことによって初めて「教えた」と呼ぶことができると考え方を「成功的教育観」と呼んで、両者を区別した。

意図的教育観の見方を取るならば、教える人が努力して働きかけて、「教えた」となる。つまり、教えたという意図を持って教えていれば、結果はどうであれ「教えた」という考え方である。しかし、成功的教育観を取るならば、教

注1 沼野一男編著『教育の方法と技術』（玉川大学出版部, 1986）
意図的教育観と成功的教育観のどちらの見方を取るかで「教える」という言葉の捉え方が変わわるだけでなく、「教え」という行為への取り組み方も変わってくる。意図的教育観を取るならば、自分は精一杯努力して「教えた」という思いが強ければ、結果はともかく教える側の責任は果たしたと満足することができる。あるいは、結果が悪かった場合には、学習者の努力が足りなかったことに責任を転嫁することもできるだろう。

しかし、成功的教育観を取るならば、自分が精一杯努力して「教えた」だけで満足することは許されない。常にゴールである学習目標が達成されたかどうかに関心を持ち、それに対して責任を持とうとする態度が要求される。

図1.7 意図的教育観と成功的教育観の対比

インストラクショナルデザインは成功的教育観を取る、ゴールベースによってデザインされたインストラクションであっても、それを実行した結果、学習者がゴールを達成する場合もあればそうでない場合もあるだろう。しかし、その結果をもとにインストラクションのデザインが適切だったかどうかを判定し、改善していくという姿勢をとる。

「正しい」教え方などない

成功的教育観を言い換えるならば、「正しい」教え方などない、ということだ。そうでなくても、常に、効果的な教え方でさええない教え方があるだけなのである。

ここまで「教育」という言葉を避けて「インストラクション」という言葉を使ってきたのは、教育には、それが「どうあるべきか」という「理念」が組み込まれているからである。教育の理念は、当該の時代と社会が決めるものである。しかし、インストラクションはそのような理念や理想を扱わないし、またその価値判断を留保する。

したがって「正しい」インストラクションという言い方は存在しない。常に、「効果的な」インストラクションと、そうでないインストラクションが存在するだけなので
である。効果的かどうかは、ゴールベースの基準によって測定される。しかし、正しいかどうかではないかという基準を、インストラクショナルデザインは持たない。

前提3：支援の方法は常に改善される

インストラクショナルデザインの3番目の前提は、インストラクションの方法は常に改善されるということである。インストラクションが効果的でなかったとき、あるいは、より効果的になる余地があるときに、それは常に改善することができる。

学習者検証の原則

インストラクションは、学び手の学習成果によって、効果的であったかそうでなかったかが測定される。つまり、学習成果を測ることで、学習者を評価していると同時に、インストラクションそのものが評価されているのである。むしろこう言った方が明確だろう。学習者を評価するのは、インストラクションそのものを評価するためである。と、学習成果があげられなかったときに責められるべきは、学習者ではなくインストラクションそのものである。この考え方を学習者検証の原則と呼ぶ。

たとえば、百まず計算というインストラクションを取り上げてみよう。「百まず計算は子どもを機械のようなものにする、だから反対する」という専門家がいたとしよう。一方で、実際に百まず計算をやっている子どもが「百まず計算で少し自信がついた、うれしい」と言っているとすれば、専門家が「子どもを機械にする」という主張は、参考意見にしかすぎなくなる。学習者検証の原則に照らしてみれば、百まず計算というインストラクションの評価は、それを実行している子どもの学習成果によって検証されなければならない。実際に学習者がどのような成果をあげたかということだけによって、評価を実施するのが学習者検証の原則である。

IDプロセス

インストラクションを改善するためのプロセスとして、「ADDIEモデル（アディーモデル）」と「ラビッド・プロトタイピング」の2つの考え方を紹介しよう。

ADDIEモデル

ADDIEモデルの「ADDIE」とは次の5つのステップの頭文字を取ったものである。それぞれのステップでは、次のような作業を行う。

- Analyze（分析）： ニーズ分析とゴール分析をして全体像を決める
- Design（デザイン）： どこをどのような形にするかをデザインする
- Develop（開発）： 教材を作成したり、ビデオを撮るなどの開発を行う
- Implement（実施）： 実際にインストラクションを実施する
- Evaluate（評価）： 実施したものを評価する

このプロセスはワンサイクルで終わるわけではなく、最後の評価で何らかの問題があれば、どの問題かを把握し、前のステップに戻って、改善し、うまくいくまで繰り返される。このADDIEモデルは、インストラクショナルデザインに限らず、商品開発
やシステム開発などにも用いられている。また「Plan-Do-See」や「Plan-Do-Check-Action」と呼ばれ、改善サイクルとも似ている。

図1.8 ADDIEモデル

ADDIEモデルは、インストラクションを改善するための着実なアプローチである。しかし、欠点を挙げるとすれば、そのサイクルに時間がかかることだろう。特に、開発への時間的なプレッシャーがある場合は、次の手法が使われる。

ラピッド・プロトタイピング

ニーズを発見したら、できるだけ速くそれに対処することが必要になってきている。開発に長い時間をかけられない場合は、まず実施できるものを作り、それを使いながら改善していこうとする。これを「ラピッド・プロトタイピング」と呼ぶ。インストラクションのコンセプトが決まったら、まず動くものを開発し（プロトタイプ）、実施しながらフィードバックを受け、即座に修正し、改善していくながら完成度を高めるやり方である。

積極的折衷主義

インストラクションのデザインと開発のための基礎となる理論はたくさんある。その理論の多くは、心理学、そしてそこから発展した認知科学や学習科学と呼ばれる領域で培われてきた。こうした理論は、時代の流れと学問の進展につれて、例外なく、隆盛から衰退（しかし消えてなくなることはない）へという道をたどっている。新しい理論は常に、その前に隆盛を誇った古い理論への批判と代替を目指しているため、これは自然なことといえるだろう。

インストラクショナルデザインは、こうした基礎理論の中の特定された1つに依存するものではない。もちろん、その時代により主流となる理論がインストラクショナルデザインの基礎理論となることは避けようがない。しかし、それでもかかわらず、インストラクショナルデザインは積極的な理論の折衷をはからうとする。

なぜならば、特定の1つの理論があらゆる状況に適合するということは、これまでにもなかったし、これから先もないと考えられるからである。新しく登場する理論は、常に、それ以前の理論では説明のつかなかった状況や現象に着目している。

1つの理論ではすべてをカバーし切れない以上、インストラクショナルデザインは常にいくつかの理論を折衷、混合した上で、デザインと開発をしていくことになる。これを「積極的折衷主義」と呼ぶ。
1.3 IDの基礎理論

インストラクショナルデザインは教育工学の（中心的）部分

インストラクショナルデザインは、学際的領域である「教育工学」の一領域である。教育工学は、Instructional Technology（あるいは、Educational Technology）の翻訳である。

アメリカ教育工学・コミュニケーション学会（Association for Educational Communications and Technology, AECT）の1994年の定義によると、教育工学は「学習の過程と資源についての設計、開発、運用、管理、並びに評価に関する理論と実践」とされている注1。つまり、学習過程と学ぶことにまつわる設計から開発・運用・管理そして評価にいたるすべての理論と実践を扱う研究領域である。

インストラクショナルデザインは、学習過程のデザインを扱っているので、教育工学の中心的な部分であることができるだろう。

学際領域「教育工学」の基盤

教育工学という学問領域は、成立してからまだ100年もたっていない、応用的・実践的な領域である。アメリカ教育工学・コミュニケーション学会は、1923年に設立された。日本における教育工学に関する代表的な学会である、教育システム情報学会の設立は、それから50年遅れて1974年、日本教育工学会の設立はその10年遅れの1984年である。

注1 ロス&モリソン『教育工学を始めよう』（北大路書房, 2002）
教育工学の基盤は次のような学問にある。

1番目は、心理学である。心理学は非常に幅の広い学問だが、その中でも、とりわけ学習の心理学とコミュニケーションの心理学が教育工学の基盤になっている。具体的には、学習心理学、認知心理学、社会心理学、臨床心理学と呼ばれる心理学の下位領域である。

この中でも、「教授・学習に関する心理学」はインストラクショナルデザインの基盤になっている。具体的には、行動分析学、認知心理学、状況的学習論の3つがそれによくあたり、このテキストでも、この3つの心理学を基礎としている。

2番目は、情報コミュニケーション技術（ICT）である。教育工学は、それ以前のワザや職人芸による教育から、科学的な理論とコンピュータをはじめとする情報技術を導入して、教育を改善しようという意図を当初から持っていた。したがって情報コミュニケーション技術が教育工学の1つの基盤になっている。これは、ただ技術を教育に取り入れるということではなく、そのことによって教育の現場で起こっていることをオープンにし、科学的に取り扱うことができるという作用がある。

図1.10 教育工学の基盤

実証ベース

教育工学は、当初から応用的・実践的な学問であった。そのため純粋な理学でもなければ、完全な工学でもない。その研究目的によってさまざまな研究手法を採っていく必要があった。

その中でも、議論のない条件は実証ベースであるということである。データについては、量的なデータでも、質的なデータでも扱う。むしろ、それらを組み合わせるところに教育工学の実践指向の研究アプローチの特徴がある。
デザイン実験

とりわけ，教育工学の特徴的な研究方法は，デザイン実験（Design Experiment）である。これは，理論を背景として，特定の現場で具体的なものを開発し，改善しながら現場に役に立つものを作っていくというアプローチである。そのようにして提出された事例研究をサンプルとして理論化していく。

現場では，実験計画法でいうところの統制群を設定することも不可能なことが多い。それに替わって，現場でのデザインと実践を行いつつ，並行してさまざまなデータを蓄積していくという方法がデザイン実験である。このアプローチは，統制群を多く，変数の統制もできないので，因果関係の特定は困難である。しかし，特定の現場における実践に伴い，様々なデータを収集し，そのプロファイリングを描いていく。それが1セットの事例研究となり，類似の事例との比較対照によって理論的なフィードバックをするのである。

図1.11 デザイン実験のイメージ

1.4 IDの応用領域

インストラクショナルデザインは，「教えること・学ぶこと」が起こっているすべての場面で応用することができる。また，教え手が，生身の人間でない場合，たとえば，放送番組や，eラーニングシステムで配信されたビデオコンテンツ，あるいは，教科書やテキスト，マニュアルといった印刷物の場合でも応用することができる。
スポーツトレーニング

スポーツトレーニングの中心は、知覚運動系の訓練である。したがって、知覚運動系の訓練に適したインストラクショナルデザインを適用すればよい。具体的な方法については、2章で扱う。

学校教育・塾・予備校

学校教育や塾、予備校で扱っている中心は、認知的能力の訓練である。したがって、認知的能力の訓練に適したインストラクショナルデザインを適用すればよい。具体的な方法については、3章で扱う。

人材育成・社内教育

企業の中の人材育成や社内教育で扱っている内容は、知覚運動系の訓練（たとえば、書類をステープラーできちんとまとめるなど）もあり、また、認知的能力の訓練（たとえば、議事録を作成など）もある。しかし、もっとも大切なのは態度の育成である。したがって、態度の育成に適したインストラクショナルデザインを適用すればよい。具体的な方法については、4章で扱う。

図1.12 IDの応用領域

インストラクションができる人を育てる

インストラクショナルデザインを専門にしている人ほど、インストラクションが上手くできることを期待される。もし、そうでなければ、自分の専門を実践できていないということになり、信用されない。インストラクショナルデザインを専門とする人は、インストラクションそのものを研究対象とすると同時に、その成果として効果的なインストラクションを実践する人である。

そのためには、インストラクショナルデザインの中に、インストラクショナルデザインをインストラクションする機能が組み込まれている必要がある。つまり、インス
トラクションという体系を人から人へ広げていくことで、再生産していくということである。

インストラクショナルデザイン

図1.13 インストラクショナルデザインの養成を組み込む

子どもの教育から生涯学習まで

インストラクショナルデザインの適用範囲は、年齢を問わない。さらにいえば、人間でなくても、たとえばイルカのトレーニングや犬のしつけなど、動物にも応用することができる。

小さな子どものしつけや基礎的なスキルを身につけさせること、たとえば自転車の乗り方を教えるなど、といったことにもインストラクショナルデザインが役に立つ。もちろん、初等・中等・高等教育においてもインストラクショナルデザインは適用できる。さらには、成人から高齢者までの生涯学習にも適用できる。

eラーニングの開発

インターネットとパソコンを使ったeラーニングという教え方が急速に広まりつつある。eラーニングにおいては生身の教え手がいないときに、どのようにインストラクションをデザインするかという点が重要な問題となる。これを解決するためには、インストラクショナルデザインによる理論と実践的な知見が必要になること。

独習書・マニュアルの開発

私たちはまた、本を読むことも非常に多い。独習書やマニュアルの開発にもインストラクショナルデザインが応用できる。どのような説明をすればわかりやすいのか、どのような図版をいれれば理解を促進できるのか、どのような章立てにすればスムーズに学習が進むのか、どのような練習問題を出せば知識を定着させることができるのか、以上のような課題はインストラクショナルデザインが関心を持つところである。インストラクショナルデザインを応用することでより良い独習書やマニュアルを開発することができるだろう。
ワークショップのデザインと偶発性

直線的で、因果論的なインストラクションではなく、相互作用的な学習を想定したワークショップなどの学習機会が増えている。それもまたインストラクショナルデザインが扱う内容ではあるけれども、この特徴では扱わない。ワークショップが古典的なインストラクショナルデザインと違うところは、参加する学習者がそのイベントそのもののデザインに介入するという点にある。半分はデザインされているが、残りの半分は偶然である。

1.5 エピローグ

-----ふう、アイダさん、ありがとうございました。インストラクショナルデザインの全体像がつかめたような気がします。専用用語が多くて、難しかったですね。

そう、専用用語ね。専用用語を自分でしゃべり始めると、インストラクショナルデザインの扉を開けたことになる。

---しかし、イルカのトレーニングまでインストラクショナルデザインで上手くできるとは驚きでした。

そこはインストラクショナルデザインが一番得意としているところだ。

---でも、教えるって、そんなに単純なものではないんじゃないですか。

もし、相手がトレーニングに素直に乗ってくれれば、必ずうまくいく。

---そんなに素直な人ばかりじゃないですよ。研修」というと、すぐに、つかまらないものと決めつける人や、やる気を失っている人も多いですからね。逆に、難しい内容だって、拒否反応を示す人たちもいます。

知っている。そもそも「教える」ってことばは、自己矛盾をはらんでいる行為なんだよ。

---どういうことですか？

「簡単なことなら教える必要はない」

---はい。

「でも、教えるためには簡単だと言わなくてはならない」

---確かに。

「簡単だよ、でも、難しいんだけどね」と言い続けなくてはならない。

---あ、面倒ですね。

そうなんだ。面倒なんだよ。教えるってことは、

---相手がいる話ですからね。

そう、常に「相手＝学び手」がいる。それが最大の変数だ。

---学び手とのコミュニケーションだから面倒なんですね。

そのとおり、でも、それは改善できる。

---ADDITIONモデルですね。

改善のプロセスがプログラムに組み込まれていれば大丈夫。
文献紹介

ディック, ケアリー＆ケアリー（2004）『はじめてのインストラクショナルデザイン』ピアソンエデュケーション

向後が、「すべてのeラーニング関係者はこの本から始めることをお勧めする」という推薦文を裏表紙に書いている。

この本は、アメリカの多くの大学でインストラクショナルデザインの教科書として広く使われている、包括的な本である。

玉木欽也ほか（2006）『eラーニング専門家のためのインストラクショナルデザイン』東京電機大学出版局

コンパクトにまとまっており、しかも網羅的なので、分厚い翻訳書よりも使いやすい。

前半はIDプロセスの解説、後半は、青山学院大学でのIDに基づく授業のケーススタディである。

全体として、インストラクショナルデザインのプロセス面を知るための入門書としてお勧めする。

■ホームワーク1

ホームワークは、個人で行う宿題です。締切までに、コースナビの所定のところに提出してください。
(1) 上手な教え方のエピソード（50点）

いままで、あなたが「これは上手な教え方だなぁ」と感じたことを思い出してください。その教え方にはどんな特徴がありましたか。重要だと思う特徴を取り上げて、300字以内で書いてください。

なお、このホームワークで想定する「教える人」は、教員に限いません。子どもにポーリングを教えるお父さん、新人に手順を教えるバイトの先輩、自動車教習所の教官、OJTをしている上司、同僚など、さまざまな立場で「教えている人」を対象としてください。

(2) 下手な教え方のエピソード（50点）

いままでに、あなたが「下手な教え方だなぁ」と感じたことを思い出してください。あなたが下手な教え方だと感じた理由はなんですか。重要だと思う理由を取り上げて、300字以内で書いてください。
2. 運動技能のインストラクション

2.0 プロローグ

—theアイダさん、こんにちは。
はい、こんにちは、え～とキミは……
—theヤマモトですっ！
ああ、そうだった。最近ときみに記憶力が落ちてね。
—theIDの考え方というか、忘れないのですで、さっそくですが、教え方を教えてほしいのです。
そうだね、まずは運動技能のインストラクションから始めようか。
—the運動技能というと、スポーツですか？
スポーツももちろん含まれるけど、ここではもっと広い範囲を扱う。子どもが自転車に乗れるようにすること、自分のマンガキャラクターを描けるようにすること、タッチタイピングができるようにすること、筆ペンで好きなものを書けるようにすること、デジカメで写真がうまく撮れるようにすること、論理すると、こんな感じかな。
—theみんな運動技能ですか？
そうだね。共通しているのは、うまくできるようになると、コトバが介在しなくなる技能だということ。
—theあ、なるほど。確かに自転車にうまく乗れないときは、「バランスをとって」とか「今ブレーキをかけて」とか考えますが、乗れるようになってしまえば、コトバは浮かんできませんものね。
そういうことだ。でも、教えるためにはコトバを使うし、使わざるを得ない。
—the「バランスをとって」とか。
だけど、学び手の方から言われれば、「バランスをとって！」と言われても、最初からそれができれば苦労しないわけでも。
—theそうですね、やりたいことは明らかなのに、いろいろ言われてもできないと悲しくなります。
運動技能のインストラクションは、単純なように見えても、難しい。それは、最終目標の技能にコトバが介在しなくなるまで、トレーニングしなければならないからだ。
—theすでに運動技能を習得した教え手は、自分ができなかった頃のことを忘れてしまっています。だから、なんで学び手ができないのかも知れないので、コトバでなんだかんだ言っても、叱咤激励してもできるようにはならないのに。
コトバを使って、コトバの介在しない技能を教えるということが難しいわけだ。
—theうまく教える方法はあるのでしょうか？
もちろんです、ある！
2.1 技能の分類

運動技能のインストラクションに入る前に、技能の分類の全体像について見ておこう。何かをインストラクションするときの「何か」は、何らかの技能を指している。たとえば、「パソコンで議事録をまとめる」という仕事を考えたときに、

1. タッチタイピングができる
2. ワープロソフトの機能を知っていて、それを使える
3. 人の発言を聞いて、的確に要約できる
4. 誰かに肩入れすることなく、発言を公平に議事録にまとめようとする

というように、何種類もの技能が必要とされる。これらのそれぞれをインストラクションすることを考えてみると、タッチタイピングの技能と、公平な議事録を作ろうとする態度（態度も技能の１つであるとしよう）とは、かなり違う領域の技能であることに気づくだろう。また、これらをインストラクションするには、異なったアプローチが必要であることも気づくだろう。

したがって、まず技能の分類をしておこう。以下に紹介するのは、ブルームの教育目標の分類と、ガニエの学習成果の５分類である。

ブルームの「頭・心・体」

ブルーム（Benjamin Bloom）が中心となって、教育目標を分類したものが、「ブルームの教育目標の分類学」として広く知られている。

これは、

1. 認知的領域（cognitive domain）
2. 情意的領域（affective domain）
3. 精神運動的領域（psychomotor domain）

の３つの領域に分けられる。

わかりやすくいえば、認知的領域は主として「頭」が働く領域、情意的領域は主として「心」が働く領域、精神運動的領域は主として「体」が働く領域である。また、それぞれ、知識（knowledge）、態度（attitude）、技能（skill）と言え換えられることもある。
ガニエの分類

ガニエ（Robert M. Gagné）は、学習成果を次の5つに分類した。

1. 言語情報（verbal information）
2. 知的技能（intellectual skills）
3. 認知的方略（cognitive strategies）
4. 態度（attitude）
5. 運動技能（motor skills）

言語情報は、言語の形で記憶に蓄えられた知識である。たとえば、「ブルームの教育目標の分類は、頭、心、体、の3つである」というような記憶に蓄えられた内容そのものである。

知的技能は、何かを区別したり、分類したり、例をあげたりする技能である。たとえば、「ブルームの精神運動的領域の一例として、タッチタイピングがあげられる」というようなことである。

認知的方略は、学び方そのものを使った、発見したりする技能である。たとえば、「ブルームの教育目標の分類を覚えるためには、自分の頭、心、体を思い浮かべながら覚えれば忘れない」というようなことを考えることである。

態度は、自分がどのように行動するかを選択したり、判断したりする技能である。
運動技能は、自分の筋肉を使って体を動かしたり、コントロールする技能である。

ブルームの分類とガニエの分類の比較

ブルームの分類とガニエの分類を比較してみると、ガニエの、言語情報、知的技能、認知的方略の3つが、ブルームの認知的領域に含まれていると考えられる。このテキストでは、ブルームの3分類を使っていくことにしよう。
2.2 スモールステップの原則

運動技能のインストラクションとは、たとえば次のようなことである。

・子どもが跳び箱を跳べるように教える
・パソコンの初心者にタッチタイピングを教える
・筆ペンで形の良い字を書けるように指導する

このような運動技能は、単純で簡単な動作が基礎としてあり、そうした複数の動作が組み合わさって複雑で滑らかな動作が形成されている。

図2.2 複雑な運動技能は単純なものから構成されている

スモールステップの原則

したがって、運動技能のインストラクションは、単純で簡単な動作からゆっくり始める。それが十分マスターできたところで、基準を少し上げて、より正確に、速く、滑らかにその動作ができるようにトレーニングしていく。

これを「スモールステップの原則」と呼ぶ。

スモールステップを使わないときのリスク

スモールステップに従わずに、いきなり、本番さながらの状況下に学び手を置いて、トレーニングすることを好む教え手がいる。

たとえば、スノーボードの初心者を教えるときにゲレンデの傾斜の急なところで連れて行って、むりやり滑らせるという方法をとったりする。ごくまれにそれに適応し
「人は失敗した時に、よく学ぶ」という言葉を聞くことがある。事実である可能性もあるわけではない。しかし、あえて学び手に失敗させることで、成功を教える仕事は難しい。

効率の良いインストラクション

スモールステップの原則を使えば、あらゆる運動技能をインストラクションすることが可能である。つまり、複雑な運動技能を、単純な運動技能に分解し、それを順序良く並べ、スモールステップでインストラクションすればよい。

そうすると、そのインストラクションを、どのようにして短時間で効率よく成功させるかという点だけが問題となる。

シェイピング

シェイピングとは、行動分析学の用語で、人や動物に、今までにやったことのない行動を獲得させる方法である（行動分析学については、次節でその概略を説明する）。たとえば、犬にお手をさせたり、イルカにジャンプさせたり、小さな子どもにバジャマを着替せたり、パソコンを初めて触る人にタッチタイピングをできるようにさせるなど、すべてシェイピングの手続きによって、速く、効率良く、新しい行動を獲得させることができる。

シェイピングの10の法則

カレン・プライア（1998）は、シェイピングの10の法則として、次のようにまとめている。

1. 十分な数の強化が得られるように、基準を少しずつ上げる。
2. 一時に一のことだけを訓練する。
3. 基準を上げる前に、現在の段階の行動を変動強化で強化する。
4. 新しい基準を導入するときには、古い基準を一時的にゆるめる。
5. 相手をたえず観察する。
6. 一つの行動は一人のトレーナーが教える。
7. 一つのシェイピング手続きをやっていて進歩しないときは、別のやり方を見つける。
8. 訓練をむやみに中断しない。
9. 一度できた行動でも、またできなくなることがある。そのときは、前の基準に戻る。
10. 一回の訓練は、できれば調子が出ているときにやめる。

注1 カレン・プライア（河崎孝・杉山尚子訳）『うまくやるための強化の原理』（二瓶社, 1998）
基準を少しずつ上げる

「1. 十分な数の強化が得られるように、基準を少しずつ上げる」は、スモールステップの原則である。「強化」とは、特定の行動の頻度が高くなることである。トレーニング全体の中では、学び手が、その時点でできる範囲で基準を少しずつ上げていく。もし、基準を上げすぎてしまうと、学び手は失敗を体験することになる。もちろん、人は失敗から学ぶこともあるのだが、成功から学ぶことの方が多い。成功によって、このままトレーニングを続けることに確信が持てる。しかし、失敗すると、それまでシェイビングしてきたものまで、崩してしまうというリスクがある。

たとえば、自転車に乗るという行動は、できている人にとってはひとまとまりの行動だが、まだ乗れない人にとっては、ペダルをこぐ、バランスを取る、ハンドルを切る、ブレーキをかける、などの複雑な技能の集合体である。練習中に、一度転ぶと肉体的にダメージがある以上に、精神的に「怖い」という感じがつくてしまう。このような運動技能をトレーニングするには、複雑な技能を分解して、スモールステップで進めるのがよい。

図2.3 シェイビングの手続き

最小単位でのトレーニング

トレーニングしても、なかなか進歩が見られないときは、「2. 一時に一つのことだけを訓練」しているほうがかかがチェックする。一度に2つ以上ごのことをトレーニングしようとすると、学び手はそのどちらに注意を集中在すればよいのかわからないならないでしょう。まずは、単一のスキルをトレーニングし、それがマスターできた段階で、複数のスキルを組み合わせるトレーニングを行う。

たとえば、自転車のトレーニングの第一歩は、ペダルをこぐ先、足で地面を蹴り、そのまま慣性で進み、ブレーキをかけて止まることから始める。慣性で進み、バランスを取るというスキルの最小単位をまず習得させる。
選択的に強化する

新しい行動をトレーニングするときは、最初は連続的に強化して、新しい行動を安定してできるようにする。しかし、一度それが確立されると、変動強化（たまに強化する）に切り替える。「3. 基準を上げる前に、現在の段階の行動を変動強化で強化する」は、現在の段階で獲得されたスキルの中の中も良い行動を選択的に強化することによって、スキルの質を高める。

たとえば、自転車でこがずにバランスを取る練習ステップであれば、最初は、よくよろしても転ばないという行動をすべて強化する。だんだんうまくになってきたら、よろよろせずにまっすぐにバランスが取れた行動だけをほめて強化する。わずわざは、歩くても、本人がわかる場合が多いので、「OK！」と言うだけ、あるいはうなずくだけでもよい。

ステップを上げたら基準を一時ゆるめる

ステップを上げると、以前にできていた行動が一時的にできなくなったり、不安定になることがよくある。別の新しい行動を習得するタスクが発生しているのだから、これは自然なことである。したがって、叱ってはいけない。何度かトライしているうちにまたできるようになる。

学び手をたえず観察する

教え手が設計したスモールステップのプログラムに沿って進めていくとしても、その進度は学び手によって異なる。あるステップは、学び手にとって長い時間かかるかもしれないが、別のステップは予想以上に簡単にクリアしてしまうかもしれない。あるステップの技能が十分習得されたかどうかは、教え手が注意深く判断しなければならない。そのためには、学び手をたえず観察することが必要である。

図2.4 シェイピングの技術

1つの行動は1人の教え手が教える

学び手をたえず観察し、その人がトレーニングのどの段階にあるのか、また、いつ次のステップに進むのか、また、次のステップとしてどんな課題を用意するのかは、常に教え手が準備しなければならない。このような状況で、教え手が別の人に交代す
進歩しないときは別のやり方で
シェイビングの方法は1つに限らない。もし1つの方法で進歩が見られなかったと
すれば、それにこだわることはない。新しい方法を考えたほうがよい。それが教え手
の仕事であるし、もし自分が考えた方法でうまくいけば、それは教え手に大きな喜び
をもたらすだろう。

訓練中は訓練に集中する
教え手は、トレーニング中は、学び手から注意を外してはいけない。もちろん、た
えず観察をしていれば、注意を外すことはできない。もし学び手から注意を外せば、
観察できないだけでなく、そのときに学び手が行っている習得中の行動に対して、悪
い影響を与えることになる。それまで、シェイビングしたものを失う危険性もある。

うまくいかなくなったら前の基準に戻る
うまくできるようになった行動でも、久しぶりにやろうとするうまくできないこ
とがある。たとえば、長く自動車を運転しないでいて、久しぶりに運転するときは、
非常に不安になるものだ。また講演や演奏会の直前にあがってしまい、すべて覚えて
いるはずのことが思い出せなくなったりする。

このようなときには、一番初歩のレベルに戻る。そのようにすれば、わずかな時間
で復習でき、すぐに習得した行動をすることができる。

一回の訓練はうまくいったときにやめる
1回のトレーニングは、時間が決まられているならば、そこまでに終わりにするこ
とになる。時間が決まられていても、決められていないにしても、トレーニングを終
わりにすべきタイミングは重要である。そのタイミングは、学び手がうまく行動を習
得したときに終了するのだが。

なぜならば、学び手にとっては、最後にうまくいったという体験が残ることになる
からだ。そのような印象で終わりにすれば、次回にトレーニングを再開するときも気
持ち良く始めることができるだろう。

しかし、多くの教え手は、学び手がうまくやると「そうだ！それをもう一度やっ
てみて！」という要求をしてしまう。しかし、うまくいった次のトライアルは、学び
手の疲れやプレッシャーなどで失敗する確率が高くなっている。そこで失敗すれば、
教え手も学び手も少からず落胆するだろう。それを避けるためにも、うまくいった
ときに勇気を持って、トレーニングを終了しよう。

トレーニングの時間が決まられている場合は、終了のタイミングを自由にとること
ができない。そのような場合は、時間が終わりそうなときに、すでに完璧にできるよ
うになっている行動を復習して、それを強化して終わりにする。そうすれば、うまく
いったときに終了するのと同じ効果が得られる。
2.3 理論的土台：行動分析学

行動分析学とは何か

心理学はもともと「ここる」を科学的に扱おうとする学問であった。しかし、心を観察し報告できるのはその本人にしかできない。これを内観報告と呼ぶ。しかし、研究者は内観報告を客観的に扱うことができない。そのため心理学は、心ではなく、第三者が客観的に測定できる「行動」を扱うべきだという勢力が1920年代から出てきた。これを行動主義心理学と呼ぶ。

行動主義心理学者の1人であった、B. F. Skinnerが体系化した理論を基礎にしたものの行動分析学と呼ぶ。行動分析学は、「どうすれば行動を変えることができるか」についての科学である。この背景には、「目の前にある行動こそが問題であり、心理的な原因ではない」という哲学がある。新しい行動を獲得させたり、現に起こっている問題行動を修正したりする必要性は常にある。それがなぜできないのかという原因をあれこれ考えるよりは、むしろ、そのための直接的な方法を使おうとする。

「心の教育」で解決できるか

学級崩壊や校内暴力は「心の教育」で解決できるだろうか。おそらく無理だろう。問題行動が「その人の心が原因で引き起こされている」という仮説を取る限り、その修正は容易ではない。なぜならば、その人の行動を変えるよりも、その人の心を変える方が困難だからである。他人の心を変えるのは容易ではない。しかし、他人の行動は変えることが可能だ。問題行動は過去に学習されたものであり、学習し直すことで修正可能だというのが行動分析学の前提である。
行動随伴性

私たちは日々いろいろな行動をする。そして、ある行動は、持続したり、ますます頻度が高くなったりする。その一方で、ある行動は、だんだん頻度が落ち、最終的にはまったくしなくなる。

たとえば、タバコをやめようと決心しても、いつの間にかタバコを吸ってしまい、その後ますますタバコの量が増えることがある。また、ジョギングを始めて、最初の一週間は毎日続けられたが、その後だんだんさぼりがちになり、最終的にはまったくジョギングをやめてしまったこともある。

このような行動の頻度の変化は何によって決まるのだろうか。おそらく何か行動（タバコを吸う、ジョギングをするなど）をしたこと、何らかの変化（気持ちが落ち着く、疲れると）が起こり、それによって次に同じ行動を取るかどうかが影響されるのだろう。

これを理論化したものを「行動随伴性」と呼ぶ。行動随伴性とは、行動とともに起こる環境の変化がその後の行動の出現頻度を決めるということである。

強化と弱化

まず、「強化と弱化」を定義する。強化とは、行動の出現頻度が高まることであ り、逆に、弱化とは行動の出現頻度が低くなることである。

好子と嫌子

次に、「好子と嫌子」を定義する。おおざっぱに言えば、好子とはもらってうれしいものであり、嫌子とはもらって嫌なものである。たとえば、チョコレートは大抵の人に好子になる、しかし、チョコレートの嫌いな人には嫌子になる。そうするとあるものが好子になるか嫌子になるかは、その人によって変わってくる。つまり、その物事が、好子であるか、嫌子であるか、その物事の不変の性質ではなく、それを受け取る人の反応によって決まる。

したがって、好子と嫌子については次のように定義する。好子とは、行動が強化されたときにその行動の直後に生じたことである。たとえば、好子なしの状態で、宿題をしたら、おやつが出たしよう。これ以降、宿題をする頻度が高まったとすれば、そのおやつ（その子にとっての）好子ということになる。つまり、好子によって宿題をするという行動が強化されたということである。

反対に、嫌子とは、行動が弱化されたときにその行動の直後に生じたことである。たとえば、嫌子なしの状態で、ゲームで遊んでいたら、怒鳴られたとしよう。これ以降、ゲームで遊ぶ頻度が低くなったとすれば、怒鳴り声は嫌子ということになる。つまり、嫌子によってゲームで遊ぶという行動が弱化されたということである。

行動随伴性の4つのパターン

このようなある行動の直後に、好子あるいは嫌子が、出現したり、あるいは消失したりすることがあると、その行動の頻度に変化が生じる。これを「行動随伴性」と呼ぶ。
行動随伴性には次の4つのパターンがある。

- 好子出現による強化：おやつなし→宿題をする→おやつあり（宿題↑）
- 嫌子消失による強化：ガミガミと言われる→宿題をする→静かになる（宿題↑）
- 嫌子出現による弱化：静か→散らかす→ガミガミと言われる（散らかす↓）
- 好子消失による弱化：おやつあり→散らかす→おやつなし（散らかす↓）

表にすると、表2.1のようになる。

<table>
<thead>
<tr>
<th></th>
<th>出現</th>
<th>消失</th>
</tr>
</thead>
<tbody>
<tr>
<td>好子</td>
<td>強化</td>
<td>弱化</td>
</tr>
<tr>
<td>嫌子</td>
<td>弱化</td>
<td>強化</td>
</tr>
</tbody>
</table>

従来の用語との対応

ここで定義した、好子・嫌子、強化・弱化という用語は、最近導入されているもので、従来の行動分析学の用語では、好子は正の強化子（強化子、強化刺激）、嫌子は負の強化子（罰子、嫌悪刺激）と呼ばれている。また、弱化は「罰」と呼ばれていたが、このワークブックの用語と従来の用語の対応を表2.2に示す。すでに、従来の用語で行動分析学を学んだことのある人は参考にしてほしい。
表2.2 このテキストの用語と従来の用語の対応

<table>
<thead>
<tr>
<th>ここでの用語</th>
<th>従来の用語</th>
<th>行動の頻度</th>
</tr>
</thead>
<tbody>
<tr>
<td>好子出現による強化</td>
<td>正の強化</td>
<td>増加↑</td>
</tr>
<tr>
<td>嫌子消失による強化</td>
<td>負の強化</td>
<td></td>
</tr>
<tr>
<td>嫌子出現による弱化</td>
<td>正の罰</td>
<td>減少↓</td>
</tr>
<tr>
<td>好子消失による弱化</td>
<td>負の罰</td>
<td></td>
</tr>
</tbody>
</table>

強化と弱化の例

強化と弱化の例を考えてみよう。ここで、「直前の状況」→「取った行動」→「直後の状況」という形式で記述するとわかりやすいので、この形式を使う。これを「行動随伴性ダイアグラム」と呼ぶ。

好子出現による強化

- 直前：おやつが【ない】
- 行動：宿題をする
- 直後：おやつが【ある】

「おやつがある」ということはその人にとって好子となるので、これ以降、おやつがない状況では、宿題をする行動が強化されることになる。

嫌子消失による強化

- 直前：ガミガミ【言われる】
- 行動：宿題をする
- 直後：ガミガミ【言われない】

「ガミガミと言われる」ということはその人にとっては、嫌子である。宿題をすることによってこの嫌子が回避されるので、これ以降、ガミガミ言われる前に宿題をするようになるだろう。つまり、宿題をするという行動が強化された。

好子消失による弱化

- 直前：おやつが【ある】
- 行動：散らす
- 直後：おやつが【ない】

「おやつがなくなる」ということはその人にとっての好子がなくなることなので、これ以降、その人は散らすという行動をそう簡単には取らなくなろう。つまり、散らすという行動が弱化された。
嫌子出現による弱化

・直前：ガミガミ【言われない】
・行動：散らす
・直後：ガミガミ【言われる】

「ガミガミと言われる」ということは、その人にとって嫌子となる。これより降、その人は散らさないようになるだろう。つまり、散らすという行動が弱化された。

死人テスト

行動随伴性ダイアグラムの「行動」の項には、行動そのものを書く。たとえば「勉強しない」ということは行動ではない。行動分析学では、行動かそうでないかを判別するために死人テストという方法を使う。つまり、死人テストでは、死人にはできないことはすべて行動であり、死人でもできることは行動ではないと判定する。先の「勉強しない」という例は死人でもできるので、行動ではない。

死人テストによって「行動」とはいえないものを分類すると、次のようになる。

・「……される」で表される【受け身】 例：怒られる
・「……しない」で表される【否定形】 例：勉強しない
・【変化を観察できない行動や状態】 例：黙る、じっとしている

学習とは

ある状況下で、ある行動を取ると、その状況が変化する。その変化がその人にとって好ましいければその行動は強化されるし、好ましくなければ弱化される。このような行動が変化していくことを行動分析学では「学習」と呼ぶ。

このように考えると、私たちは日々学習をしていますことになる。新しくできたレストランに行って、価段の割においしかった、次もそこに行く確率は高まるだろう。また、今までおいしかったのに、ある料理人が替わって、おいしくなくなったとしたら、行く確率は低くなるだろう。こうしたことは環境からの学習といってよいだろう。

行動分析学的に見たしつけ

一方で、子どものしつけのように親が子どもに対して学習させるということもある。行動分析学的に見れば、しつけというのは、親が好子や嫌子をコントロールして、子どもの適切な行動の頻度を高め、不適切な行動の頻度を低めるということにはならない。

たとえば、子どもが悪い行動をしたときに親が叱るのは、叱るという嫌子を出現させて、悪い行動を弱化しようとしている。しかし、叱られるという嫌子は何度も出されるだけで慣れないでしょう。また、親の注目を引きたいがために、わざと悪い行動をする場合もある。この場合は、叱られるということはその子にとっては嫌子どころか好子になる。叱られるという「注目」を得られるからである。

このように、いったい何が好子・嫌子として働いているかを見極めることに注意をしなければならない。「叱る」という嫌子を出しているつもりでも、その行動の頻度
2.4 続けさせる技術

トレーニングがうまくスモールステップで設計されているならば、あとは、それをいかに持続させるかということだけが課題になる。続けば、ゴールが達成できる。しかし、多くの場合、ゴールを達成する前にトレーニングをあきらめてしまうのである。

したがって、教え手の仕事は、いかにして学び手にトレーニングを続けさせるかという点に焦点化される。そこで、学び手を「続けさせる技術」が必要になってくる。行動分析学のこともばええば、いかにその行動を強化するかということである。以下に、強化の技法について説明する。

即時フィードバック

ある行動を強化したい、あるいは持続したいと思うなら好子を提示すればよいということはすぐに納得できるだろう。しかし、重要なのは、どのようなタイミングで好子を出すかということである。強化したい行動が起こったら、すぐに好子を出す。これを即時フィードバックと呼ぶ。「すぐに」というのはどれくらいかといえば、「1分以内」と考えておく。1分以内で、できるだけすぐにということが即時フィードバックということである。

したがって、強化したい行動が起こったらすぐにフィードバックをする。たとえば、ピアノがうまく弾けたら、すぐに「できたね」と認める。特別にほめなくてもよい。もちろんほめることは好子になるけれども、ただ認めるだけでも好子になる。相手から関心をもってもらえるということが、たいていの場合好子になる。一方、
毎回ほめていると、だんだんありがたみがなくなってくる。そうなると、もはや好子としての働きはなくなってくるだろう。

ルール支配方針

そう考えると、学校の授業、とりわけ大人数の授業では、即時フィードバックがほとんどない学習環境だということができる。教員の声をただひたすら聞くだけという学習環境ではフィードバックはほとんどないため、その行動も強化されることなく、居眠りをしたり、内職をしたりしてしまうということになる。

それでもなお、強化のない授業をまじめに受けて、勉強している人もいる。それは、即時フィードバックを受けなくても、ルールに支配された行動をしているのだと考えられる。「このように続けてまじめに勉強すれば、最後の試験で良い成績が取れるだろう」というような内在化したルールに従っていると考えられる。これをルール支配行動と呼ぶ。

逆にいえば、ルールが内在化していない小さな子どもであればあるほど、即時フィードバックによる強化が大切だということになる。

図2.7 ルール支配行動
強化のスケジュール

続けて欲しい行動は、常に強化し続けなければならないかというと、そうではない。強化は学習段階だけ必要であり、一度学習が成立してしまうと、自分でうまくやるようになるので、強化し続ける必要はない。

それどころか、逆に、毎回強化してはいけない。なぜなら、毎回強化すると、いいかげんになってしまうからである。

強化のスケジュールには、固定強化と変動強化の２種類がある。

固定強化

月給制のように、一定時間ごとに強化があるものを固定強化と呼ぶ。また、出来高給のように一定の行動ごとに強化があるものも固定強化である。時間ごとにしても、行動ごとにしても、私たちの身近でよく見られる強化の方法は固定強化である。

変動強化

一方、変動強化では、不規則な時間ごと、あるいは行動の不規則な回数ごとに強化が行われる。バチンコや競馬、競輪、あるいは宝くじのようなすべてのギャンブルは変動強化による強化である。いつ当たって、好子がもらえるのかが予測できない。

変動強化は一般的に強力な強化であることがわかっている。多くのギャンブルでは、負け続けて、いくら損をしても、いつかは勝ってる（ごくたまに強化が行われる。これは、予測のできない変動強化であるので、なかなかギャンブル依存を断ち切ることができないのである。

好子は少ないほどよい

好子の量は、少ない方が少ないほどよい。たとえば、いくらチョコレートが大好きでも、出し続けると何かはおなかがいっぱいになり、それ以上はしあがらなくなる。
は、言葉で言うのはタダだからといって、ほめてばかりいたら、ありがたみがなくなる。あまりほめられていると、しまいには、バカにされているのかと思うかもしれないだろう。また、お金はいくらあってもうれしいものだが、出し続けるには限界がある。

このように一般的に通用する好子は、出し続けるとすぐに飽和してしまうか、あるいは出すのに限界がある。したがって、好子としての効果をできるだけ長く持続させるためには好子を控えめに出すことことが必要である。

それとは逆に、大当たりというテクニックがある。予想していないときに、大きなプレゼントをもらうと非常にうれしいものだが、予期していないときの大当たりは、変動強化である。

プレマックの法則

プレマックの法則は、その人の高頻度の行動そのものが好子として使えるというものである。
たとえば、電話でおしゃべりをするのが好きで、それを頻繁に行う人は、その行動そのものが別の行動をするための好子として使える。その人が帰宅が嫌いで、なんとか帰宅をすることに強化したいと考える。帰宅をしたときに限って、電話をかけておしゃべりしてもよいという約束をする。はじめは、いやいや帰宅をして、やって電話をかけられるという体験になるか、これを繰り返すうちに、自然的に帰宅をし、そのあと電話をかけるという行動パターンが確立するようになるだろう。

もちろん、これは自分で自分の行動パターンを変えたいと思っているときにも使える。たとえば、レポート課題が出ているのに、なかなか手をつけられないときは、自分の高頻度な行動（たとえばメールをチェックするなど）を探し、それとやりたい行動を結びつける。たとえば、レポートの1段落を書いたら（あるいは15分間レポート課題に取り組んだら）、メールをチェックしてもよい、というように、もちろんスモールステップの原則にしたがって、目標行動のハードルは低いところから始める。

なお、プレマックの法則においては、好子となる行動が自分にとって好ましいかではなく、あくまでも「高頻度」であることが前提である。高頻度かどうかを判定するには、一定期間観察して、好子となる行動の自発頻度が、習慣づけたい行動の自発頻度よりも多くなっていることを確認する。そのときに、プレマックの法則が適用できる。

強化は双方向的である

強化スケジュールをうまく利用すれば、他人の行動を強化したり、制御したりすることができる。これを延長していくと、他人を思いのままに操ることもできそうな気がしてくるかもしれない。

確かに、行動の値をすれば、他人の特定の行動を強化することができる。しかし、これは一方的に、教え手が学び手の行動をコントロールしているということではない。

この2人の関係を、さらに外側から見えてみよう。教え手が学び手のある行動を強化する。すると、学び手のある行動を強化してうまくいったという結果そのものが、教え手自身の、教えるという行動を強化することになる。つまり、たとえ、教え手が学び手を一方的に強化したと思っていても、学び手の特定の行動が強化されたという結果そのものが、教え手の教えるという行動を強化しているのである。もし、そうでなければ、教え手は教えるという行動を継続しないだろう。つまり、教え手は、学び手から強化のコントロールを受けざるを得ないのである。
図2.8 双方向の強化による信頼関係

2.5 やめさせる技術

不適切な行動の頻度を少なくし、最終的にはやめさせることもまた、トレーニングのひとつである。

消去

ある行動が持続して起こるのは、その行動が、好子出現か嫌子消失によって強化されているからである。この強化随伴性がなくなれば、その行動も徐々になくなる。これを「消去」と呼ぶ。
たとえば、ある人にメールを送ると返事をもらっていたのに、あるときから相手の
返事が来なくなれば、その人にメールを送るという行動は徐々に頻度が少なくなり、
やがて消去される。

図2.9 消去

バースト
もちろん、突然、やけになったように大量のメールを送ったりすることもあるかもしれない。
このような行動をバーストと呼ぶ。しかし、それでも、何の返事も
なければ長期的にはメールを送るという行動は消去されるだろう。

重要のは、バーストに対しても、動揺せず、何の反応もしないことだ。そうすれば、
その行動は消去される。もし、バーストに対して何らかの反応をしようと、
それが元の行動を強化してしまうだろう。しかも、これは変動強化（予期しないとき
に強化されたから）なので、せっかく消去しかかっていた行動の頻度が復活してしまうだろう。

復帰
逆に、ある行動が弱化されてるために起こっていなかったのに、その弱化随伴性が
なくなったために、その行動がふたりび起こることがある。これを復帰と呼ぶ。たとえば、ある生徒が教室で騒ぐとたびに先生に叱られて、そのために騒ぐ頻度が押さえられていたとしよう（嫌子出現による弱化）。しかし、ある時期に先生が代わり、その
先生が叱ることをしなければ、その生徒が騒ぐ行動は、以前の頻度に戻る。これが復
帰である。

嫌子は効果がない
では、不適切な行動を抑えるためには、嫌子を出し続けなければならないのだろうか？そんなことはない。嫌子を使わずに、不適切な行動をなくす方法はある。それ
は、このあとに紹介する。

しかし、人間は、嫌子を使うのが好きだ。子どもが暴れれば、怒鳴ったり、叩いたりする。部下が失敗すれば、叱りつけたり、小言や嫌みを言う。店員の態度が悪ければ、その会社にクレームの電話をする。しかし、実際は、このように嫌子を出して
も、元の行動が改まることはほとんどない。
相手の行動が改まることがほとんどないので、私たちは怒ったり、怒鳴ったり、叩いたり、つねったり、小言を言ったり、説教したり、クレームの電話をかけたりするのだろうか。こうした嫌子は、受け取るべきも嫌だ（なにしろ嫌子なのだから）、嫌子を出すほうも愉快な行動ではない。怒鳴ったあとの、自己嫌悪は多くの人が体験しているだろう。

嫌子を使ってみよう理由のひとつは、嫌子を出すと、一瞬でも相手の不適切な行動がおさまるからだ（それは単に相手がびっくりしているからという理由ばかりだ）。それが、嫌子を出すほど強化的に働くのである。したがって、一度嫌子を出ると、また出たくなる。しかし、2回目の、もっと強い嫌子でなければ、効果目には、このようにして、嫌子はどんどんエスカレートしていく。そして、人間関係を破壊していくのである。それは、好子を使った双方向の強化が、お互いの信頼関係をより強くしていくのとちょうど逆の現象である。嫌子を使った弱化は、お互いの信頼関係を破壊する。

では、嫌子を使わずに、相手の不適切な行動をやめさせるにはどうすればよいのだろうか。カレン・プライア（1998）は、次のような方法を提案している。

対立行動法

対立行動法は、やめさせたい行動とは同時にできない行動をさせ、それを強化する方法である。その結果として、やめさせたい行動はできない。

たとえば、子どもが車の中で大騒ぎをしていたら、いっしょに歌を歌ったり、ゲームをしたり、お話をしてあげたりする。歌も、ゲームも、お話を聞くことも、大騒ぎという行動とは同時にできない。歌を歌えば、同時にできない大騒ぎという行動はなくなる。

たとえば、テニスで、一度ついてしまった悪いフォームの癖はなかなか直らない。そういうときは、正しい動作をムールステップで着実にトレーニングする。正しいフォームができるようになれば、癖のついたフォームは同時にできないので、結果的に出なくなる。

部下は、さばることがある。さばるのをやめさせたいのなら、何か仕事を与えればよい。「さばるな！」と言って叱るのではなく、何か仕事を与えて、できたからそれを強化する。何もやることがなければ、さばるのは当たり前のことである。何も与える仕事がなければ、「今、何をやるべきかリストアップしよう」という仕事を与える。

合図法

合図法は、合図を出したときにだけやめさせたい行動をさせ、それを強化する方法である。このようにトレーニングすれば、合図のないときにはその行動が起こりにくくなる。

子どもが車で大騒ぎしていたら、「これから10秒間できるだけ大声を出すゲームをしよう」と言って（これが合図）、みんなで大声に出す。これを何度か繰り返す（ト
レーニング）すると、だんだん飽きてくる。これによって、合図のないときには、
大騒ぎ行動が出にくくなる。
変な癖がついているテニスのフォームでは、「今のは良くないフォームです、その
打ち方をちょっと続けてみましょう」（これが合図）と言う、しばらくやったあと
で、「どうですか？ 球はうまく飛びませんね」とフィードバックし、切り替え、
適切なフォームをトレーニングする。
勤務時間中にさぼる社員には、チャイムを鳴らして（これが合図）きちんと休憩時
間を作り、休憩させる。休憩時間中は音楽を鳴らすのもよいだろう（これも合図）。
決められた時間にきちんと休憩することをトレーニングすれば、合図のないときには
さぼり行動が出にくくなる。

他行動法

他行動法は、やめさせたい行動以外のすべての行動を強化する方法である。そのこ
とによって、やめさせたい行動は、よりすみやかに消去される。
子どもが車で大騒ぎしていたら、静かになるまで待つ、静かになったら、「今日は
静かにしているから、マクドナルドに行こう」と言う（強化）。
変な癖がついているテニスのフォームでは、悪いフォームでのショットは無視し
て、良いショットのときだけほめる。
さぼる部下には、良い仕事をしたら、すべてほめる。最初はたくさんほめ、徐々に
ほめる回数を減らす（それでも効果はある）。

嫌子ではなく好子を使おう

以上の、「やめさせる方法」で共通しているのは、好子を使って、適切な行動を強
化していることだ。適切な行動を強化することによって、結果として、不適切な行動
は無視され、起こらなくなる。不適切な行動を、直接のターゲットとして、嫌子を
使ってそれを弱化しようとしてもうまくいかない。好子を使って強化しよう。

2.6 応用デザイン

個別化教授システム（PSI, Personalized System of Instruction）

個別化教授システムは、1960年代にアメリカのF. S. Kellerによって提案され、主と
して大学で実践された。当時のアメリカでは、大学生の学力低下が社会的問題とな
り、大学の授業をいかに確実なものにするかということが課題だった。
個別化教授システムは次のような原理で設計されている。

1. 独習用教材を使って、個別に進める
2. 自己ベースによりコースを進める
3. 単元を完全習得することによって次に進む
4. プロクター（教育助手）が助言とテストを行う
5. レクチャーは学生の動機づけのためだけを行う
6. 最終的な評価として最終テストを行う

ここでは、スモールステップの原則や、確認テストによる即時フィードバックといった行動分析学の原理を応用して、自己ベースによる完全習得を目指している。

コンピュータ支援教育（CAI, Computer Assisted Instruction）

今では、ニンテンドーDSのようなポータブルなゲーム機で、漢字や英語のドリル学習をするとは珍しくない。しかし、コンピュータが出始めた頃は、これを教育に活かそうということで、学習用のコンピュータソフトがたくさん作られた。これをコンピュータ支援教育（CAI）と呼ぶ。

CAIの最も强力な点は、即時フィードバックが可能であることである。コンピュータであれば、プログラムによってすぐに、合っているか間違っているかを提示できる。また、必要であれば、解説を提示することもできる。この即時フィードバックが可能であることによって、CAIは今なおゲーム機上の学習プログラムとして生き続けている。これは、スモールステップと即時フィードバックの原理が学習に効果的であることを、実証し続けていることにほかならない。

ゲームの面白さ

ゲームはなぜ面白いのだろうか、その大きな理由は、即時フィードバックにある。うまくいったのか、あるいは、失敗したのかがすぐに明らかになるようになってる。そして、あるレベルのスキルをマスターすれば、すぐに次のステージが用意されている。スモールステップによる設計である。これらは、行動分析学の枠組みで説明することができる。ゲームの面白さとインストラクションへの応用については、動機づけの章でもう一度考えることにしよう。

2.7 エピローグ

——アイダさん、スモールステップと即時フィードバックの重要性がよくわかりました！
スモールステップの原則は、運動技能だけじゃなくて、広い範囲のインストラクションで有効な原理だよ。

——そうなんですか。
運動技能に限らず、基礎的なスキルが積み上げられて複雑なスキルを構成しているような場合はすべてこれでいける。

——たとえば数学のようなものでも？
そうだよ。
——でも、なんで数学嫌いが多いんでしょう?
それはね、数学に限らず、教室での一斉授業は、スマートステップにはならないからだ。
——なぜですか？
個人によって理解のスピードが違うから。
——だからドロップアウトが出るんですね。
そうだ。だから、教室でドロップアウトした人も、個人ベースでスマートステップ方式で学び直せば、完全習得できる。
——うーん、じゃあ、教室で勉強する意味はなんですか？
教育の最も安上がりな形態だということ。あとは……、友だちを作ることかな。
——まあ、確かに個別指導してくれる先生がいるなら、ちょっと大変なことでもマスターできそうですが。
ヤマダくんも、スマートステップの原則を使えば、たいていのことはうまく教えられるよ。
——すみません、私、ヤマダではなく、ヤマモトです。
いや、これは失礼、即時フィードバックしてくれてありがとう。
——あ、これも即時フィードバックなんですね。
会話は、即時フィードバックの絶対だ。
——そういわれれば、そうですね。
会話をすればするほど、両者の間に信頼関係が育まっていく。
——アイダさん……。
あ、いや、そういうことはなくて。
——何、考えているんですか？
何も。

文献紹介

杉山尚子（2005）『行動分析学入門—ヒトの行動の思い入れない理由』集英社新書

行動分析学の十分な入門書としては、杉山尚子・島宗理・佐藤方哉・リチャード＝マロット・マリア＝マロットによる『行動分析学入門』（産業図書, 1998）がある。しかし、ちょっと大きな本なので、その入門編としてこの新書本をお勧めする。

全体として、行動随伴性、シェイビング、単一被験体法とバランス良く、しかもわかりやすく解説されている。インストラクショナルデザインの源流は、行動分析学にあるので、まずこの本からスタートするのはよいだろう。
カレン・プライア（1998）『うまくやるための強化の原理』二瓶社

すべての親、教育関係者、教師に読んでもらいたい本である。この本は、どのようにしたら望ましい行動をさせることができるか（強化と強化スケジュール）、どのようにしたら望ましい行動を形成することができるか（シェイピング）、どのようにしたら最も命令で行動をさせることができるか（刺激制御）、どのようにしたらやめて欲しい行動をやめさせることができると（消去）、という原理と具体的な方法を伝えている。

とりわけ、次のようなことは読者の目を開かせてくる。

「生徒のことを考えている」と自称する先生が使う「体罰」や、体罰の代わりに使われる「叱り」、「小言」、「脅し」といった方法は最も効果がないうち、何が相手の好子になるかをいろいろ考えることはトレーナーや教師の創造的な仕事であること。教師と生徒の「コミュニケーション不足」とは本質的には、生徒に理解されない命令を乱発していることであり、教師によるいき加減な刺激制御によって生徒が弁別刺激行動との関係を形成できていないということ。すなわち、生徒の心を理解しようとする前に、自分が適切にコミュニケーションしているかどうかを自問しなければならないことに気づくだろう。

島宗 理（2004）『インストラクショナルデザイン----教師のためのルールブック』米田出版

なぜ「教育」ではなくて「インストラクション」という言葉を使っているのか、ある種つかみどころのない「教育」と、きっちりと定義づけられた「インストラクション」とはどこが違うのか、適切なインストラクションを行うには具体的にはどうすればよいのか、以上の方が、まさに適切なインストラクションによって学ぶことができる。

島宗 理（2000）『パフォーマンス・マネジメント----問題解決のための行動分析学』米田出版

現実の社会や組織や個人のさまざまな問題を解決するために行動分析学をどう使っているかを、具体的な事例を取り上げて、背景となる研究論文を駆使しながら説明している。

パフォーマンス・マネジメントは行動分析学を使って問題解決のための確実な方法を提供する。この本はとりわけ、教師や塾の先生、パソコンのインストラクター、スポーツのコーチなどあらゆる意味で何かを教えることを仕事をしている人や、会社などでプロジェクトを指揮する人、リーダー、管理職の人には必読の本と言えるだろう。
■ホームワーク2

(1) 運動技能のインストラクションの設計（50点）

身近にいる人に、何か運動技能を教えてください。誰に何を教えるということを書いてから、その具体的なインストラクションの方法を、スモールステップの原則にしたがって考え、400字以内で書いてください。インストラクションは長くても1時間を超えない程度のものを想定します。

以下に、「誰に、何を教える」の例を挙げますので参考にしてください。

・同級生の友だちに、けん玉の技を教える
・サークルの後輩に、クラブでさまになるダンスの踊り方を教える
・バイト先の新人に、ハンバーガーの作り方を教える
・自分の子どもに、パジャマのたたみ方を教える
・会社の新人に、ネクタイの結び方を教える
・おじいちゃんに、スーパーマリオのコントローラーの操作の仕方を教える

(2) インストラクションの実施結果と考察（50点）

(1)のインストラクションの設計にしたがって、実際にインストラクションを実施してください。その途中経過と結果（成功しても、失敗してもOKです）について客観的に報告してください。そして、なぜそのような結果になったかについて考察してください。以上を、400字以内で書いてください。
3. 認知技能のインストラクション

3.0 プロローグ

ーーアイダさん、こんにちは。
あ、ヤマトくん、だったね。
ーー元前、覚えていただけたんですね。
記憶することは認知技能の１つだ。
ーーブルームの３分類の中の「認知的領域」つまり「頭」ですね。
そうだ。すごいね。
ーー今、好子を受けて取って、強化されました。
いや、まったくすごい！
ーーアイダさん、好子の出しきすぎです。
……さて、今回は、認知技能のインストラクションだ。
ーー学校で学ぶことの多くは、認知技能ですよね。読んだり、書いたり、計算したり、
覚える、問題を解いたり、判断したり、議論したり。
そうだね。
ーー運動技能のインストラクションの基本は、スモールステップと即時フィードバック
でしたかが、認知技能ではこれは使えないのですか？
いや、そんなことはないよ。スモールステップと即時フィードバックの原則は、いつでも生き
ている。黄金のルールだ。
ーーということは、認知技能のインストラクションでは、さらに何か必要になってくる
のですか？
教え手は、人間の記憶と思考のしくみを考慮する必要があるね。
ーーなるほど。
それから、人間の理解の過程が、必ずしもスモールステップではない場合もある。
ーー確かに、なかなか理解できなかったことも、まったく違う説明を聞いて、ばっと
わかってしまうということもありますね。
そうだね、そういう場合は、教え手が特定の説明方法にこだわっていると、なかなか突破で
きなかったりする。
ーー教え手は、「これが正しい教え方だ」と信じ込んでいますからね。
そのとおり、教え手は常に自分の説明のしかたに疑問を持つべし！「正しい教え方などな
い」と言ったとおり、学び手が理解できないのであれば、それはなんと言おうと「教えたこ
と」にはなってないんだよ。
ーーでたっ、アイダ節！
ふふっ、では、先に進もう。
3.1 認知技能とは

認知技能とは、ブルームの分類では「頭」の領域である。読んだり、書いたり、計算したり、事実や手順を覚えたり、分類したり、比較したり、まとめたり、分析したり、判断したり、評価したりするような技能である。その技能の多くは言語が関わっている。しかし、イメージやグラフィックもまた重要な役割を果たしている。

ガニエは、ここでいう認知技能を、言語情報と知的技能にわけている。言語情報は、言語の形で記憶に蓄えられた知識である。一方、知的技能は、何かを区別したり、分類したり、例をあげたりする技能である。つまり、言語として蓄えられたものを知識として、それとは別に、知識をどのように操作するかというものを区別している。

この章では、ガニエの言語情報と知的技能をまとめて、認知技能として扱う。

認知技能の熟達

認知技能では、言語が重要な役割を果たしている。それは、運動技能が、最初は言語によるインストラクションを必要とするにしても、次第に熟達するにつれて、言語の介在が少なくなるのは、対照的である。逆に言えば、運動技能においては、言語が介在しているうちは、熟達したとは言えない。

しかし、認知技能では、常に言語情報を処理することになる。そして、言語情報をいかにして高速に、そして、正確に処理するかが、その熟達度を示すことになる。

ベースとしての言語

ガニエが言語情報と知的技能を区別したのは、知的技能を発揮するためには、そのベースとして言語情報が貯蔵されていなくてはならないという事実に基づくものである。私たちは、初等教育、および中等教育で、大量の事実を、おもに言語情報によって、自らの記憶に貯蔵していく。これは、思考するという知的技能が、そうした知識のベースなしには機能しないからである。つまり、私たちはその期間を使って、言語を知的技能の道具として、自然に使えるように訓練しているということにほかならな

3.2 説明の技術

認知技能の中で、最も基本的なことは、記憶することと思考することである。これらは、ブルームの認知的領域では、「知識」と「理解」に相当し、ガニエの5分類では、「言語情報」と「知的技能」に相当する。
記憶と思考のインストラクションにおいては、教える内容を、言語またはグラフィック（イメージ）によって、学び手に提示し、それを説明することが必要である。この情報提示と説明の仕方において、教え手の技術が問われることになる。この技術をここでは、説明の技術と呼んでおく。以下に、説明の技術について、述べていく。

記憶のための説明の技術

どんな内容を教えるにしても、まず、教えようとする内容の要素はそれぞれ何と呼ぶのか、という言語的な情報を教える必要がある。そして、学び手はそれらを言語情報をとして記憶していく。特に、初等教育、中等教育では、このような言語情報を記憶する活動が多くを占めている。これは、その後、学び手が成人になってから他人とコミュニケーションを円滑にとるためにも、また、そのことによって次々と新しいことを学んで行くためにも必要不可欠なことである。共通のコトバを持たなければ、コミュニケーションはできないからである。

しかし、教え手が、教えるべき言語情報を、ただやみくもに学び手に提示しても、それが直ちに記憶されるわけではない。そこで、記憶のために最適な方法、情報提示をする必要性が出てくる。そのためには、人間の記憶のしくみがどうなっているかをまず知っておく必要がある。この領域を研究しているのが認知心理学である。

短期記憶と長期記憶

人間の記憶は、短期記憶（short-term memory）と長期記憶（long-term memory）からなっている。短期記憶は、作業記憶あるいは作動記憶（working memory）と呼ぶこともある。

長期記憶は、ものの名前や文法、自分の誕生日や住所など、必要に応じて思い出すことのできる記憶である。それに対して短期記憶は、今一時的に覚えておくことのできる記憶である。

たとえば、初めて聞いた電話番号を、筆記するまで覚えておくためには、頭の中で繰り返すことが必要となる。これをリハーサルと呼ぶ。覚える情報の数が多ければ、リハーサルを行っているときは他のことを考えることができない。つまり、短期記憶には容量の限界がある。ミラー（G. A. Miller, 1956）は短期記憶の容量は「7 ± 2」となり、5～9のユニットであることを実験的に明らかにした。これを「魔法の数字（magical number）7 ± 2」と呼ぶ。
抑制的に情報提示する

短期記憶の容量に限界があるということから導かれる説明の原理は、一度に説明しようとする内容をできるだけ少数のユニットにするべきだということである。それは、最大でも7つ、通常は5つ以内、できれば3つに抑えるのがよい。

つまり、言語情報のインストラクションでは、何を教えるかではなく、「何を教えなくて、提示する情報の数を抑えるか」ということが決定的に重要なのです。しかし、教え手は、自分が知っていることを一度にすべて教えるとしながちである。そうした行動が、本人の優越感を満足させることで強化されているのかもしれない。しかし、そんなことをさせても、学び手はとまどうばかりである。一度に大量の情報を提示されても、そもそも記憶できない。教え手は、情報提示するときに、抑制的にふるまわなければいけない。

チャンク：意味のあるまとまり

短期記憶の容量には限界がある。しかし、覚えておく内容をまとめたりすることによって覚えやすくなる。たとえば、数字の語呂合わせをすることによって、覚えておくことのできる数字の桁数は飛躍的に増える。このような意味のあるまとまりを「チャンク（chunk）」と呼ぶ。

サイモン（H. A. Simon）は、チェスの盤面を、熟達者と素人に覚えさせ、それを再生させる実験をおこなった。チェスの盤面は、どの駒がどの位置にあったのかというものを1つのユニットとすれば、短期記憶の容量である7ユニットをはるかに超過する。しかし、チェスの熟達者は、その複雑な盤面を再生することができた。

これは、チェスの熟達者は、盤面をいくつかのチャンク、つまり、どの駒がどの駒に応対しているのかという意味のあるまとまり、として覚えているのではないかということを示唆している。その証拠として、駒をまったくでたらめに配置した盤面の記憶では、熟達者と素人の記憶成績には差がなかったことがあげられる。駒をでたらめに配置した場合には、熟達者とはいえ、それをチャンク化することは不可能である。したがって、通常の短期記憶の容量しか使えないことになる。

図3.1 短期記憶と長期記憶
維持リハーサルと精緻化リハーサル

リハーサルは、覚えようとする内容を口に出して言ったり、心の中で繰り返したりする行為である。これは短期記憶の中で行われ、その一部が長期記憶に貯蔵される。

内容を単に繰り返すようなリハーサルを「維持リハーサル」と呼ぶ。このタイプのリハーサルでは、長期記憶に転送される確率は低い。たとえば、人から聞いた電話番号を心の中で維持リハーサルしてもなかなか覚えることはできない。維持リハーサルの間はそれを覚えていても、メモしてしまえば、すぐに忘却されるだろう。

それでは、短期記憶の内容を長期記憶に固定するにはどうしたらよいのだろうか。

電話番号の例で言えば、341-9696を「みよいろごろ」というように語呂合わせすることで覚えることができる。このようなリハーサルを、ただ繰り返す維持リハーサルとは区別して、「精緻化リハーサル」と呼ぶ。精緻化というのは、覚えようとする内容を別の事柄に結びつけることである。つまり、精緻化リハーサルによって341-9696という数字の列を「みよいろごろ」という意味のある文字列に結びつけたことになる。

ネットワーク構造

記憶には、覚えている内容が貯蔵されているわけではない。そうではなく、関連のあるものはまとめて格納されていると考えられている。そこで、内容を「ノード」と呼び、そのノードと他のノードとの結びつきを「リンク」と呼ぶ。記憶の構造は、たくさんのノードが他のノードとリンクされている「ネットワーク構造」になっている。

図3.2 記憶のネットワーク構造

精緻化

あることを記憶するためには、その内容そのものを覚えるだけでなく、他のことから関連づけること、つまりリンクを張ること、をすることが効果的である。なぜならば、他のリンクからその内容に行き着く確率が高まるからである。このように、注目
している事柄に別の事柄を結びつけることを「精緻化（elaboration）」と呼ぶ。前述した精緻化リハーサルは、精緻化を短期記憶の中で行うことである。

たとえば、人の名前を覚えるためには、その名前に何を付けるか、という名前だけを異形（維持リハーサル）するのではなく、その人から連想されること、趣味、出身地、好きなタレントなど、さまざまなことをその人の名前に関連づけて精緻化すると効果的だ。そうすれば、名前を忘れたとしても、他のリンクをたどってその名前を思い出せる可能性が高まるからである。

体制化

精緻化された記憶のネットワーク構造は、意味や発音、イメージなどさまざまなものが自発的にリンクされたものと考えられる。その一方で、記憶内容をなんらかの基準で分類・整理することも長期記憶の維持に役立つ。

内容を分類・整理することを「体制化（organization）」と呼ぶ。すでに体制化された記憶があれば、新しく入ってきた情報でも、その位置づけをすることにより、簡単に覚えることができる。

イメージの利用：二重符号化説

何かひとまとまりのものを覚えようとするととき、それを語彙的な情報だけでなく、イメージ的な情報を同時に提示することによって、記憶が促進されることが明らかにされている。ペイヴィオ（Pavio）は、これを「二重符号化説（dual-coding theory）」と呼んだ。

説明の技術

以上をまとめれば、知識や情報を提示することでインストラクションを行う場合、以下に注意を払うとよい。

1. 一度に提示する情報の量を抑えて、短期記憶の容量におさまるようにする。
2. 中心となる情報を提示した後、それに連関する情報を追加することにより、精緻化を促進する。
3. 情報を意味のあるまとまりとしてチャック化したり、内容を分類・整理することにより、体制化を促進する。
4. 情報を、言語とイメージ（グラフィック）によって提示し、それらを学び手自身が統合することで、強い記憶イメージが作られる。
3.3 理論的土台：認知心理学

行動分析学における，行動関係性に基づく理論は，シンプルで強力である．それは，行動や環境という，外から観察できるもの（だけ）をデータとして扱っているという点にある．

しかし，たとえば，バズルを解いているときの人が観察してみよう．すると，そこではほとんど動きは見られない，ときどき何かをメモしたり，1人でつぶやいているとしても，それ以外のことは，観察可能な行動としてとらえることができない．

とはいえ，頭の中では活発に何かを考えたり，記憶したり，思い出したりしていることは疑いようがない．行動分析学の枠組みでは，こうした頭の中で起こっていることをとらえることが困難である，むしろ，その人が何を考えているかを，あえてそのままにして，どのような行動をするか，またそのときにどのような環境の変化があっただかをモデル化することによって，厳密で予測力のある行動関係性のモデルを作ることができたのである．

認知を科学的に扱う

人（あるいは動物）が，見たり聞いたりして知覚したり，記憶したり，思い出したり，いろいろなことを考えたりすることを「認知（cognition）」と呼ぶ．行動分析学のあとに登場した，認知心理学は，こうした認知の働きを科学的にとらえようとすることを「認知革命」と呼ぶ研究者もいる．

私たちが，認知的な活動をしていることばは，自分自身としては明白である．今，自分が何を考えているかを，他人に報告することができる．これを「内観報告」と呼ぶ．しかし，行動分析学をはじめ，科学的な心理学を醸成する勢力は，この内観報告を科学的データとしては扱えないとして批判してきた．つまり，内観報告どおりのことをその人が考えているかどうかを，第三者が検証することができないという批判である．このことが，認知心理学がますます越えるべきハードルとなった．

モデルとしてのコンピュータ

私たちが常に頭の中で何かを考えていることは明白である．これを何とか科学として扱えないかと認知心理学者が努力しているときに，コンピュータが発明され，普及し始めた．

コンピュータは，コンピュータが理解できる言語，つまりプログラム言語によって制御され，動いている．プログラムは，端的には「もし…ならば…する（IF-THEN）」という形の命令が連なって記述されている．

一方，私たちの思考や判断も，「もし雨が降っているなら，傘をさす」というように，プログラム的なもので記述することができる．思考や判断が複雑であったとしても，プログラムを複雑にすることによって記述することができる．

そこで，人間の思考過程をコンピュータとプログラムによってモデル化し，そのことによって扱いやすいと認知心理学者たちは考えた．人間は，外から刺激を入力
し、思考のプログラムによって処理し、そして、外に行動として出力するというもののが、認知心理学のモデルであった。

図3.3 認知心理学のモデル

認知心理学の方法論

思考のプログラムのモデルでは、思考過程を通プログラムに「たとえている」だけである。したがって、思考過程とプログラムが「同一」だということを主張しているわけではない。そうではなく、同じ刺激（たとえば、パズル）を、人間とモデル・プログラムに与えて、同じような出力（そのパズルの解法）が得られれば、人間はモデル・プログラムのように思考している「可能性がある」ということを弱く主张するだけである。しかし、それでも人間の思考過程を解明する第一歩にはなりうる。

なお、この背景には、チューリング（A. Turing）が提起した「機械は思考できるか？」という問題があった。この問題に取り組むためには、ある機械（あるいはプログラムを含む人工物）が思考していることを、どうやって判定するかをまず決めなくてはならない。チューリングは、この問題を「判定者が、別の部屋に入った人間あるいはコンピュータとタイプライターを通して会話し、その相手が人間なのかコンピュータなのかを区別できないならば、それをもって機械が思考していると認定できる」と規定し直した。これは「チューリングテスト」と呼ばれ、その後、人工知能 (artificial intelligence, AI) の研究領域でさまざまな議論が繰り広げられた。

発語思考

そうしたモデル・プログラムを作るために、認知心理学者は人間のデータを取る必要があった。それは昔からの内観報告でも良かったのだが、さらに厳密にするために「発語思考 (think aloud)」という方法を考えた。これは、何かを考えると同時に、すぐにその内容を言葉にしてしゃべってもらうという方法である。訓練すると、人間は短期間記憶の内容を即座にしゃべることができるようにになる。このような言語データはプログラムを作るための信頼性の高い材料となりうる。
天秤問題

認知心理学では、思考をどのようにモーダル化するのだろうか。その具体例として、シーグラー（R. S. Siegler）が使った天秤問題を取り上げよう。これは、図3.4のような天秤の状態を与えて、どちらに傾くのか、あるいはつり合うのかを子どもに考えさせるという問題である。

図3.4 天秤問題

私たち、このような天秤問題に対して、「重さ×支点からの距離」を計算し、その値を比較することで、どちらに傾くかあるいはつり合うかを予測することができる。このような知識を、手続き的知識と呼ぶ。

宣言的知識と手続き的知識

長期記憶には、宣言的知識（declarative knowledge）と手続き的知識（procedural knowledge）が格納されていると考えられている。

宣言的知識とは、事実についての知識である。たとえば「所沢市は埼玉県にある」のような知識である。また、「先週私は所沢キャンパスに行った」というような知識も宣言的知識だが、このように時間や場所や人物などの特定の文脈とともに記憶されている内容を「エピソード記憶」と呼ぶ。

それに対して、手続き的知識とは、活動をどのように実行するかについての知識である。たとえば「新宿から所沢キャンパスまで行くための手順」のような知識である。手続き的知識は、自転車の乗り方のように自動化されていることもある。自動化されている場合は、語化するのが逆に難しい知識になっている。

プロダクション

手続き的知識は、記憶の中では「もし……ならば……する（IF-THEN）」というような形で貯蔵されていると考えられている。このようなIF-THENの形のルールを「プロダクション（production）」と呼ぶ。

私たちの思考過程は、記憶に貯蔵されたプロダクション「もし……ならば……する」を使い出し、順次それにしたがって判断をし、何かを実行しているのだとモデル化することができる。「もし熱があるならば、病気である」や「もし熱あれば、喉が痛いのであれば、風邪である」、「もし風邪であれば、病院に行き薬をもらう」のようなプロダクションを記憶の中の知識として持っていて、必要に応じて判断し、実行している。
天秤問題のプロダクション

もし両側のおもりの位置が同じであれば，次のようなプロダクションだけで正解を得ることができる。

P1：もしおもりの数が同じなら，そのとき「つり合う」と言え。
P2：もしX側のおもりの数が多いなら，そのとき「X側が下がる」と言え。

しかし，両側のおもりの位置が違う場合は，次のプロダクションが必要になる。

P3：もしおもりの数が同じで，X側の距離が長いか，そのとき「X側が下がる」と言え。

このように問題を解きながら学習していくことは，新しいプロダクションを自分の記憶に作り出していくことだと考えられる。

さて，図3.4のように，両側のおもりの位置が違い，さらにおもりの数も違い，両者が互いに競合状態になっているときはどうだろうか。

この場合は，「トルク（力と距離の積で表される量）」という新しい概念を作り出す必要がある。そして次のようなプロダクションを導入する。

P4：もしX側のおもりの数が多くて，X側の距離が短いか，そのときトルクを計算しろ。

そして，トルクに関する次のプロダクションを導入する。

P5：もし「トルクを計算しろ」なら，そのとき「重さ×距離」を計算してトルクとせよ。

そして，最終的に次のプロダクションを導入する。

P6：もしX側のトルクが大きいなら，そのとき「X側が下がる」と言え。

P4～P6の3つのプロダクションを導入することによって，トルクという新しい概念と，その計算方法を導入し，天秤の傾きについて正しい予測ができるようになった。

認知心理学から見た学習

天秤問題で見たように，この問題を正しく解決するためには，いくつかのプロダクションが記憶の中にあることが必要である。このように，適切に働くプロダクションを自分の記憶の中に生成していくことこそが，すなわち認知心理学から見た学習ということになる。

3.4 認知を変える技術

記憶と思考のインストラクションを受けただけで，私たちはすぐにそれらの認知技能ができるようになるわけではない。もしそうなら，教えるという仕事はかなり楽な
もののになるはずだ。しかし、現実はそうではない。一方、教え手は「教えたのだから、できるはず」という思い込みをもつのである。
　たとえうまく教えても、学び手はすぐにできるようにならない。それはなぜか。次のような理由が考えられる。

1. 一度誤った知識を取り入れてしまうと、それを修正するのが難しい（バグ修正の問題）。
2. たとえ正しい知識を取り入れたとしても、それを違った場面や状況で適用するのが難しい（領域固有性の問題）。
3. 問題自体が、さまざまな要因が複雑に絡み合ってできている場合、それらを調整しながら解決してもいくことが難しい（不良構造化問題）。
4. 自分が今、どのような状況にあるのか、また、何をするべきなのかを判断することが難しい（メタ認知の問題）。
5. 教えられたことを半自動的に、滑らかに行うためには、時間をかけて練習しなければならない（熟達化の問題）。

教え手は、認知技能のインストラクションをするときに、以上の問題を意識して、教え方の工夫をする必要がある。以下に、これらの問題について検討していこう。

間違える理由がある
　長期記憶の中にある知識は、必ずしも正しいものばかりではない。人が何かをうまくできないのは、それを処理するためのプログラムやスキーマ（プログラムの集合体）が獲得されていないということである。あるいは、間違ったプログラム（バグ）、あるいは間違った概念（誤概念）がすでに形成されてしまっている場合もある。
　ある人が何かをできないかからといって「どうしてできないの？」と問いかけることは、ほとんどの場合、役に立たない。プログラムがもともとなかったり、バグであったりすれば、できないのは当然のことだ。
　だから、教え手は、「どうしてできないの？」と問うのではなく、どのように間違えているのかを細かく観察したり、あるいはテストを行ったりして、バグを同定したり、まだ形成されていないプログラムを推測する必要がある。それこそが教え手の仕事であるといえる。

スキーマ
　互いに関連したプログラムが集まって、大きな枠組みを作っているものを「スキーマ（schema）」と呼ぶ。私たちは状況に応じて、長期記憶からスキーマを呼び出し、それにしたがって行動している。
　たとえば、レストランにはいって、メニューや注文をして、食事をして、支払いを済ませるというような一連の行動は、「レストラン」スキーマと呼ばれるものを
参照して、半自動的に実行されると考えられる（スキーマの代わりに「スクリプト (script, 台本)」と呼ぶこともある）。
このように、スキーマを使うことによって、私たちはいちいち考えなくても、適切な行動ができる。逆に言えば、スキーマを持っていない一連の行動を初めてするときは、それぞれの行動ステップを認知的に処理しなければならないので、非常に疲れるととえば、初めて外国旅行をしたときのことを思い出してもよいだろう。
スキーマは一度獲得されると、大変便利なものである。しかし逆に、一度成立したスキーマは、修正したり、壊すことが難しくなる。この意味で、スキーマは「偏見」になったり、「固定観念」になったり、「思いこみ」になったりする可能性もある。

誤ったスキーマを診断する
たとえば、2桁の数字の繰り下がりがある引き算を教えている場合を想定しよう。「73-26」を「=53」と計算している子どもがいたとする。その子どもに対して「違うよね、正しい答えは47だと思う」言う前に、なぜこの子どもがこのように計算しているのかを診断する必要がある。
そうすると、「3-6のように、引けないときは、6-3のようにひっくり返して引く」という誤ったプログラムを、この子が持っているのではないかという可能性に気づくだろう。そして、その仮説を確かめるためには、別に「54-19」のような問題を解いてもよさそうだ。

図3.5 バグを正しいプログラムに置き換える
このようにして、そのバグが確実なものだとわかってきたから、「あなたは、このように引いているけれども、それは間違いです。正しくは、このようにするんだよ」というインストラクションに入っていく。そうすれば、バグを修正し、正しいプログラムに置き換えることができるだろう。
正解を教えることは、そのままインストラクションになるわけではない。認知技能の場合は、誤ったスキーマを診断して、それを置き換えていくことによってインストラクションが成立するのである。まずは、相手がすでに持っている誤ったスキーマを診断することが重要である。

58
応用できない理由がある

適切なプログラムを持っているからといって、いつでもそれを活用できるわけではない。練習問題は解けても、応用問題が解けないことがある。練習のときには完璧にできていたのに、本番になるとうまくいかないことがある。公式は覚えていたのに、それを使えばよいことにまったく気がつかないこともある。

もし、適切なプログラムが生成されているだけですべてうまくいくのであれば、このような応用ができない事態は起こらないはずである。しかし、現実はそうではない。原理を適用すればよいことを知っているにもかかわらず、それが適用できないことが多いのである。これはなぜなのだろうか。

ウェイソン課題

次の問題を考えてみよう。

カードの一方にはアルファベットが、その裏には数字が書かれている。いま「母音の裏には偶数が書かれている」という命題が正しいかどうかを確認したい。次の4枚のカードのうち、少なくともどれを裏返してみることが必要だろうか。

![図3.6 Wason課題](image)

この問題を、考えた人の名前をとってウェイソン（Wason）課題と呼ぶ。この課題は大学生でも数割の人しか正解を言うことができない（答えは次のページの脚注）。

それでは、次の問題を考えてみよう。A, B, C, Dの4人は何かを尋ねられると、それぞれ図3.7のように答える。この中から「20歳未満の人はアルコールを飲んではいけない」という法律に違反している人を探すには、少なくともどの人に聞いてみることが必要だろうか。
図3.7 Wason課題と同型の課題

この「アルコール問題」は、どうだろう。簡単に正解が見つけられたに違いない。
実は、この「アルコール課題」は、前のウェイソン課題とは、論理的構造がまったく同じものなのである。しかし、アルコール課題では解くのが易しく、ウェイソン課題では難しくなっている(注1)。
これは、同じプログラムが働いているとしても、その文脈によってそのプログラムが正しく使えたり、使えなかったりすることにほかならない。

領域固有性と転移

最初にそのプログラムを獲得した領域では、そのプログラムが正しく使える。しかし、別の領域や文脈が変わってしまうと、そのプログラムを利用することができないことがしばしば起こる。これを「領域固有性（domain-specificity）」と呼ぶ。逆に、領域を飛び越えて、別の場面でもプログラムを利用できることを「転移（transfer）」と呼ぶ。
アルコール課題が正解できたのに、ウェイソン課題が解けなかったのは、アルコール課題で使うことのできた知識、つまりプログラムがウェイソン課題には転移しなかったということになる。

一般に、領域固有の知識は強く長く保持される。それはリアルな状況の中で、少しずつ累積されて獲得されたプログラムだからである。その一方で、領域固有ではなく、一般的に使われることを目指した抽象的な知識は、弱く短い期間しか保持されない。学校で教えられる知識の大部分は、一般的に使われることを目指したものである。しかし、それは逆に、弱い知識にしかならないのである。テスト前に一夜漬けで覚えた知識は、テストが終われば忘却される。それは単に一夜漬けという覚え方によるものではなく、一般的な知識であるがために、そもそも保持されにくい知識だからである。

さらにいえば、学校で教えられる知識は、学校の教室内で通用する知識としての領域固有性を持っているといえる。そのために学校のテストでは良い点数をとっても、毎日の生活における活動に応用できるかというと、必ずしもそうはならない。つまり、学校の知識が、現実場面に転移しにくいものになっているということである。

注1 ウェイソン課題の正解：Eのカードと7のカード。アルコール課題の正解：16歳の人とビールを飲んだ人に聞く。
図3.8 領域固有の知識が転移しない例

転移を促進する

とすれば、認知技能のインストラクションでは、できるだけ転移を促進しなければならない。単に、正しい知識や、一般的な原理、公式を教えただけで、それを適切な場面で利用できなければ、まったく不十分である。学び手が、その知識を適切に使用するようになって、はじめてそれを「教えた」と呼ぶことができる。そのためには、ひとつの原理や公式を、さまざまな場面やケース、文脈の中で使うという練習をさせなければならない。

不良構造化問題

数学好きな人の意見を聞いてみると、「筋道をきちんと立てればうまく解けるし、正解が1つにさらに結まるので気持ちよい」という意見がある。その一方で、作文などは、正解が1つに結まるというものではない。

作文の課題のように、問題全体の構造が複雑に絡み合っており、下位の問題を相互に調整しながらでないと解決できないような問題を「不良構造化問題」と呼ぶ。「数学は好きだけど、作文は苦手」という人は、こうした不良構造化問題が苦手なのであろう。不良構造化問題では、作文以外にも、旅行やイベントの計画と手配など、現実場面では数多く現れる。

たとえば、作文では次のような課題を、同時に並行して考えなくてはならない。

1. 読者はどんな人か
2. どれくらいの分量で書くか
3. どういう文体で書くか
4. 全体の段落構成をどうするか
5. 今、書いている段落の内容をどうするか
6. 今、書いている文の内容をどうするか
7. 今、書いている単語でよいかどうか
8. その単語を漢字にするか、ひらがなにするか
9. ………

人間の短期記憶（作業記憶）の容量には限界がある。したがって、こうした不良構造化問題を解決していくのは難しい。それは、一度にたくさんのことについて判断していかなくてはならないからである。問題の構造が複雑で、同時にゆるいものであればあるほど、たくさん判断が必要され、結局としてそれが問題解決を困難なものにしている。たとえば、あるテーマについて、レポートを書くことが困難なのは、判断をしなくてはならないことがたくさんあるからである。

一度にやる作業を限定する

では、不良構造化問題を解決し、うまく知的な作業を進めるにはどうしたらよいだろうか。それは、一度にやる作業を限定することによって、不良構造化問題を良構造化問題に転換していくことである。

作文の例で言えば、全体の構想を考えているときは、それに集中することである。また、ある段落を書いているときは、その作業に集中する。このようにすることで、一度に考えなければならない情報量を限定することができ、短期記憶の容量の範囲内で作業ができるのである。

メタ認知

私たちが、自分が今何を考えているのかについてモニターすることができる。たとえば、テレビドラマを見てそのストーリーを理解しているときに、明日プレゼンテーションをしなくてはならないことを思い出し、テレビを消してその準備に取りかかることができる。このように、私たちには、自分の心的過程をモニターし、それをコントロールする能力がある。これを「メタ認知（metacognition）」と呼ぶ。メタ認知とは「自分の認知についての認知」という意味である。

学習する上で重要なメタ認知の機能には、次のようなものがある。

・自分の行動の結果を予測する能力
・自分の行動の結果を評価する能力
・自分の活動の進み具合をモニターする能力
・自分の活動は現実に対して合理的かを確かめる能力

成績の悪い生徒は、自分が教材を理解していないことや、何かわかっていて、何かわからないことなのかがわかっていないケースがある。自分の理解に問題がある
ということに気づいていなければ、それを克服することも不可能である。このようにメタ認知の能力は、学習を進める上で非常に重要な能力といえる。

メタ認知を育てるグループ学習

メタ認知的能力を育てるにはどうすればよいだろうか。

１つの方法として、グループ学習がある。グループ学習では、他のメンバーに説明する必要性がよく生じる。自分の知識を明示的に言葉にすることで、今自分が何を考えているか、問題解決過程のどこに位置するのか、何がわかっていて、何がわからていないのかということを明らかにすることができる。

こうしたことを言葉にするためにはメタ認知を使わなければならない。したがって、グループ学習をすることによって、メタ認知を使う機会が増え、その結果としてメタ認知的能力を育てることができると。

また、自分の意見を言うことによって、他者からその発言に対してのさまざまな吟味や批判がされる。それを受け取ることにより、他者の視点を自分のものとすることができる。その結果、他者が実際にいないケースであっても、自ら、他者の立場で自分の認識過程について、批判的な吟味を行うことができるようになる。

以上のように、グループ学習はメタ認知的能力を向上させるのに効果的である。それは、グループメンバーが議論することそのものではなく、議論をするために、自分の意見を説明することと、他人の意見を良く聞くことの２つの行為が、メタ認知的能力を促進しているのである。

図3.9 グループ学習によるメタ認知の促進

熟達化

私たちが、ピアノを弾けるようになったり、将棋が指せるようになったり、病気の診断が的確にできるようになったりするためには、どれくらいの時間がかかるだろうか。ノーマン（D. A. Norman）は、こうしたことがから学習するためには最低限で5000時間が必要であることを観察している注1。5000時間は、毎日8時間、週5日を訓練に費やしたとすれば、約2年半で達成できる時間である。「石の上にも3年」とい

注1 D.A.ノーマン『認知心理学入門』誠信書房, 1984

63
3.5 応用デザイン

アンカード・インストラクション

獲得された知識には領域固有性があり、それを別の場面に転移させることは難しいことだということがわかっている。それを克服するためには、提示された知識を「自分にとって意味のある文脈」の中でその知識を獲得していくことが有効である。この点で工夫した教え方を「アンカード・インストラクション(anchored instruction)」と呼ぶ。これは、一般的な知識を、意味のある文脈に組（いかり）を落とすように獲得させるという意味である。

アンカード・インストラクションの一例が、ジャスパー・プロジェクトである。これは、小学校高学年から中学生を対象にしたビデオ教材である。ビデオの中では、主人公のジャスパーが冒険の中で出会い問題が描かれている。

たとえば、最初のエピソード「シーダークリークへの旅」は、ジャスパーがクルーザーの中古物件を広告で見つけ、持ち主に会いに行き、購入したそのクルーザーで川を下って家に帰ってくるというストーリーである。クルーザーのヘッドライトが壊れているので、日が沈む前に家に着かなくてはならない。

この課題を解決するために、学習者は次のような情報が必要なことを話し合う。日没の時間、売り主からジャスパーの家までの距離、クルーザーの進む速度、川の流れの速度など。こうした情報を得て、計算して、最終的には何時にジャスパーの家を出発しなければならないかというプランを立てていく。
アンカード・インストラクションでは、このように、ある程度複雑で現実感のある状況設定の中で、必要な情報と不要な情報を見分け、また、抽象的な計算や考え方を現実に当てはめていく学習が行われる。こうしたことによって、抽象的な知識を現実場面にアンカーしていくのである。

3.6 エピローグ

——アイダさん、認知心理学はすごいですね。
どうして？
——その人がどのようなパズルを持っているかを診断できれば、その人にあった教え方ができるじゃないですか。
そうだね、でも、パズルを個別に診断するだけでもけっこう大変だけれどね。
——でも、あとはそのパズルを取り除くだけですね。
とはいっても、人間は自分がすでに持っている認知をなかなか捨てられないものなんだよ。
——そうなんですか？
あなただって、人から言われたことのすべてを、すぐに受け入れられるわけじゃないでしょう？
——まあ、そういえばそうですね。
私たちが持っている認知は、日々使われていて、それがうまくいっている限りは、固定化されていて、なかなか変わらない。
——うまくいっているかどうかを判断するのも認知ですよね。
そうだ。そして、本当はうまくいってなくても、うまくいっているようにねじ曲げてとらえるのも認知の働きなんだね。
——メタ認知がうまく働いていないということですね。
そのとおり！
——誰でもうまくいっていないと認めるのはいやでしょう。
そこが、認知を変えることの難しさだね。同時に、教えることの難しさでもある。
——教えることの難しさ？
教えることというのは、最終的には、その人の認知を変えることだから。
——なるほど。行動分析学的には、教えることは、行動を修正したり、いままでできなかった行動をできるようにすることでしたね。一方、認知心理学的には、教えることは、認知を変えたり、いままでなかった認知を獲得させることなんですね。
そうだ。すばらしい！
——こんなふうに自分の言葉でまとめると、頭の中に整理されるような気がします。
付け加えるなら、認知と行動とは対立するものではないって、緊密に結びついている。行動を変えれば認知も変わるし、逆に、認知を変えれば行動も変わる。
——なるほど。インストラクションでは、行動にアプローチする方法と、認知にアプローチする方法をマスターして、2つを組み合わせればよいんですよね。
ヤマモトくん、きみはすばらしい！
文献紹介

ジョン・T. ブルーアー『授業が変わる—認知心理学と教育実践が手を結ぶとき』北大路書房, 1997

この本は、認知心理学の知見を、現実の授業にどのように活かしていくのかを中心に詳しく検討している。算数・数学教育、理科教育、読む指導、作文教育、というような具体的な領域において、認知心理学のアイデアによる教授法がどのような効果をあげることができるかについて書かれている。学校教育に関心がある人、授業をすることを仕事にしている人にお勧めする。

今井むつみ・野島久雄『人が学ぶということ』北樹出版, 2003

この本は、インストラクショナルデザインの上台としての認知心理学（=認知的学習論）をカバーするものとして最適な一冊である。認知的学習論の具体的な成果としての教材である。ジャスパープロジェクトもこの観点から詳細に検討されている。

森敏昭・中條和光編『認知心理学キーワード』有斐閣, 2005

この本は、広範な認知心理学の領域の中から、重要なキーワードを厳選し、その解説を見聞き2ページにまとめることにより、認知心理学全体を見通すことができる。

表面的な大項目主義ではなく、ちょっとひねったところの、でも重要な（つまり認知心理学として面白い）キーワードが選ばれている。そのため、最初から通読しても、面白く読むことができ、この本を通読することで、認知心理学が関心を持つトピックの全体像をつかむことができる。
■ホームワーク3

(1) 認知技能のインストラクションのための教材作成（50点）

身近にいる人に、何か認知技能を教えるための教材を、A4判用紙2ページ以内で作ってください。誰に何を教えるということを決めた上で、教材を作ります。教材は、それを読むだけで、学びが独習できるように作ってください。

教材は、WordやPagesなどのワープロソフトで作るか、あるいは手書きで作成します。適宜、図や写真を挿入することができます。

ワープロソフトで作った場合は、それをPDFファイルにして添付してください。
手書きで作った場合は、デジカメで撮影し、その画像ファイルを添付してください。

以下に、「誰に、何を教える」の例を挙げますので参考にしてください。

・小学生に、鶏飼いの解き方を教える
・麻雀を知らない友人に、麻雀の上がり方について教える
・バイト先の新人に、レジの打ち方について教える
・会社の新人に、出張報告書の書き方を教える
・おじいちゃんに、パソコンの起動からWebページの検索まで教える

(2) インストラクションの実施結果と考察（50点）

(1)のインストラクションの設計にしたがって、実際にインストラクションを実施してください。その途中経過と結果（成功しても、失敗してもOKです）について客観的に報告してください。そして、なぜそのような結果になったかについて考察してください。以上を、400字以内で書いてください。
4. 態度のインストラクション

4.0 プロローグ

ーーアイダさん、こんにちは。

やあ、ヤマモトくん、こんにちは。

ーー運動技能と認知技能のインストラクションを学んだら、どんなことでもうまく教えられるんじゃないかなと思えるようになりました。

いや、まだ難関が残っている。

ーー難関？ なんでですか、それは？

ブルームの3分類で言えば「情意的領域」、つまり「心」。ガニエの5分類で言えば「態度」だ。

ーー態度ですか～、これはとらえどころがないですね。運動技能や認知技能であれば、けん玉をやってもらうとか、パズルを解いてもらうとかすれば、明確にわかります。態度はどうやって示せばよいのか……。

確か、態度というのは心理学的には「構成概念」だからね。実際に「これ！」とといって見せられるものじゃない。

ーー構成概念って何ですか？

仮にこのようなものがあるとすれば、説明するのに便利だというものの。たとえば、性格なんかは構成概念だと思う。「引っ込み思案」というものが実際にあるわけではない。だけど、その人のいろいろな行動や考え方を観察すると「引っ込み思案」という「性格」を仮定するとうまく説明できるわけだよ。

ーーなるほど、でも、その人の態度を知りたいとすれば、その人のいろいろな行動や考え方を観察して、判断するしかないわけですね。

まさにそのとおり。

ーーでも、それは煩雑で、面倒じゃないですか？

でも、一貫性はあるわけだよね。その人のある対象に対する態度は、ところどころ変わるわけではない。だから、ちゃんと観察すれば、態度は判定できる。

ーー態度は判定できるとしても、それを教えることなんてできるんでしょうか？

態度は「これ！」と言って見せることができないので、なかなか難しい。まあ、具体例は見せることはできるんだけど。

ーーたとえば「数学嫌い」を「数学好き」にすることなんて、できるんでしょうか？

まさに、それは態度のインストラクション！

ーーできるんですか？

どうだろうね。
4.1 態度とは何か

ガニエの「態度」の定義

ガニエの学習成果の5分類の中の「態度」は、「ある物事や状況を選ぶ／避けようとする気持ち」と定義されている。その具体的な行動は「選択する」ということである。

たとえば、「町をきれいにしたい」という態度を持っている人は、ゴミが落ちているのを見たら、それを拾って、ゴミ箱に捨てることだろう。それは毎回ではないかもしれない。つまり確率的な事象である。何回かに1回の確率でゴミ拾いをするならば、その人は「町をきれいにしたい」という態度を持っていると判断される。そのときに、その人はゴミ拾いという行動を「選択」している。その行動の選択頻度が高ければ高いほど、町をきれいにしたいという態度を強く持っていると判断される。

態度の操作的定義

さて、「町をきれいにしたいですか？」と聞かれれば、たいていの人は「したいです」と答えるだろう。しかし、実際に落ちているゴミを拾う人はそう多くはない。この両者の間のギャップから学ぶことは、ある態度について直接的に言葉で質問して、その回答を得たとしても、その回答はあまり信頼できないということである。ただ「そう思っている」というだけでは、態度とは言えない。したがって、態度を測定するためには、それを目に見える行動の形で定義しなければならない。このような定義の仕方を「操作的定義（operational definition）」と呼ぶ。

![図4.1 態度の位置づけ](image)

態度とは、ある事象に対する知識やスキルが備わっていて、なおかつそれを行動として選択し、実行できるということである。したがって、運動技能や認知技能が、まだ準備されていなければ、考えとして「そうしたい」と思っていても、行動として実
行できないだろう。態度というのは、運動技能と認知技能をコントロールする機能を持ち、それらを選択し、実行する心理的プロセスである。

ブルームの「情意的領域」

ブルームの情意的領域は、ガニエの態度と同じものを扱っている。たとえば、「読書に関する情意的目標」では、つぎのような行動（傾向）が挙げられている注1。

・読書の時間をもっと持ちたいと思いますか？
・本を読みたいと2、3日のうちに読んでもらえますか？
・図書館か本屋でどちら拾い読みしながら時間を過ごすことがありますか？
・自分が読んだ本に関して他の人の意見を聞くのが好きですか？

このような行動が頻繁に観察されれば、その人は「読書好き」という態度を持っていると認識することができる。

4.2 態度を変える技術

態度は命令できない

特定の態度をインストラクションすることはできるのだろうか？まず明らかなことは、文脈のない状態で、態度を教えることはできない、ということだ。

態度とは、特定の運動技能あるいは認知技能を行動として実行することを選択することであるから、必要な運動技能あるいは認知技能が備わっていなければ、そもそもその行動を起こすことができない。

一方、必要な運動技能あるいは認知技能が備わっていたとしても、それを行動として起こすかどうかは態度次第である。たとえば、ゴミを拾うという行動は誰でもできるけれども、それを実行する確率は、その人の「特定の文脈におけるゴミに対する態度」に依存するだろう。

その人に「そこで落ちているゴミを拾ってください」と命令することは容易である。そして、それを聞いてゴミを拾ってくれることもあるだろう。しかし、それは「ゴミを拾う態度」を教えたということにはならない。もし、ゴミを拾う態度が獲得されたなら、何も言わなくても、ゴミを拾うという行動が自発されなくてはならないからだ。あることを命じて、それに従わることは可能だ。しかし、それと態度を獲得させることはまったく別のことである。

注1 タキソノミーの詳細分類とテスト項目例 http://www.gsis.kumamoto-u.ac.jp/opencourses/pf/2Block/04/04-taxonomy-kyou.html
態度とコミュニティ

さて、その人の態度はどのようにして作り上げられたのかということを考えるなら、それは、人が属しているコミュニティ（共同体）から明示的に教えられることもなく、学習した結果であると考えられる。

コミュニティとは、家族、近所、学校、サークル、職場など、人が「所属している」という感情を持つ集団である。そのコミュニティのメンバー全員が、自発的にゴミを拾う行動を起こしているならば、そのコミュニティメンバーは、自然にゴミ拾い行動を実行し、その結果として、そうした態度を身につけるだろう。

文脈のない状態で態度を教えることはできない、ということは、コミュニティという背景なしに態度を教えることはできないということである。

価値体系を学ぶ

コミュニティと態度の学習との関係を考えるために、師匠と弟子の関係である「徒弟制」というコミュニティを取り上げてみよう。

徒弟制において、弟子入りした新入者が、最初のうちは、掃除などの雑用しかさせてもらえないのは、その徒弟内の価値づけを学習していると捉えることができる。つまり、掃除をさせるのは、掃除のスキルを学習させるためではない（おそらくそのスキルだけであれば、すでに持っている）。そうではなく、掃除という行為が、その徒弟コミュニティ内では、新入がかますべき仕事であること、そして、師匠から奥義を教えてもらうためには長い道のりが待っている、という価値体系、言い換えれば、徒弟制のシステム構造を学ぶのである。

つまり、掃除ということ自体に意味があるわけではない、掃除という仕事が新入りのための仕事であるという縦断に意味があるのである。そして、時間をかけて、新入者が掃除という仕事から次に別の仕事を与えられること、そのこと自体が、その新入者が次の段階に入ったことの目印となるのである。そのような道のりの中で、徒弟制の中でのふるまい方、言い換えれば、価値体系を学んでいく。それが、態度の学習であると言うことができるだろう。

態度のインストラクションは可能か

再び、態度のインストラクションは可能か、という問題に立ち戻るならば、直接態度をインストラクションすることはできないと考えられるだろう。態度は、特定のコミュニティの中でのふるまい方を含む、価値体系と言えるからだ。特定のコミュニティの価値体系を獲得するためには、時間をかけて、そのコミュニティメンバーとしての経験を重ねることが必要である。
4.3 理論的土台：状況の学習論

認知を制約するもの

認知心理学者が考えるように、確かに人は頭の中に表象を持ち、記憶の中のスケーマやプログラムを用いて、計画を立てたり、問題解決をしたり、判断をしたりしている。しかし、実際には、そうした活動は頭の中だけで閉じているわけではない。外界からさまざまな情報を引き出したり、他の人の話を聞いたり、相談したりして、問題解決に役立てている。

また、頭の中では多様な解決策が考えられても、実際には、現実的な条件や制約があるので、すべての可能性を試すことなく、解決策は少数の中から選べば良い場合がほとんどである。たとえば、今日の昼食に何を食べるかを考えたときに、私たちはありとあらゆるメニュー思い浮かべているわけではない。現在いる場所、手持ちのお金、一人か複数人かというような環境の制約によって、決と簡単には決まることはできない。

まとめると、人が外界から情報を取り込み、認知的プロセスを経て、行動するということについては疑いない。しかし、すべてを認知的プロセスが決定しているわけではない。むしろ人を取り巻く環境が認知的プロセスを制約し、そのために人の認知活動はそれほど負荷がかからないうまく働いているということができる。

アフォーダンス

J. J. Gibsonは、人間の認知の情報処理的な考え方に対して、独自の理論を展開した。そのひとつが、アフォーダンス（affordance）である。アフォーダンスとは、「環境が生物に提供するもの」ということを指している。

座れる！

アフォーダンス

図4.2 環境からのアフォーダンス

たとえば、座れる面が水平で、横長のベンチは、人に「座ること」をアフォードしていると考えられる。このベンチには座ることもできるが、同時に、横になり、寝そべることもできる。つまり、「寝そべること」もアフォードしている。しかし、座る面を、水平ではなく、傾いたものにしたベンチについて考えてみよう。相変わらず、座
状況的学習論

行動分析学が、行動とそれによる環境の変化の随伴性がその次の行動を制御するというモデルを取ったのに対して、認知心理学は、頭の中の認知プロセスに焦点を合わせた。そして、再度振り子は揺り戻されて、内面の認知プロセスと外的環境からの情報の双方が学習に関与しているという立場が主流になった。

このように考えると、人はいつでも環境から何かを学んでいるといえよう。その環境というのは、学校や教室や教科書や教員のような、教えることを目的とした環境だけではなく、日常的な生活、地域の人付き合い、趣味のサークル、職場での仕事というようなあらゆる環境の中から何かを学んでいる。

そこから学んでいるものは、正しい知識やスキルというような学校的なものではなく、暗黙的な知識やツール、あるいは、ある場所でどうすれば適応的にふるまえるかというような、広い意味での学習である。このような学習を、状況的学習（situated learning）と呼ぶ。

このように「学習」という言葉を、さまざまな場での状況から何かを学んでいくことのように拡張することで、学習を社会的な営みとして捉え直したのが状況的学習論である。

注1 D. A. ノーマン『誰のためのデザイン?—認知科学者のデザイン原論』新曜社, 1990
4.4 正統的周辺参加

コミュニティへの参加の過程

レイヴとウェンガー（J. Lave & E. Wenger）は、『状況に埋め込まれた学習』という本の中で、文化人類学的な研究を検討し、「学習とは実践コミュニティ（community of practice）への参加の過程である」という考え方を示した。具体的には、仕立屋や、海軍の操舵手、肉加工職人などの徒弟制度を分析した。

徒弟制度では、図4.3に示すように、徒弟コミュニティの外の人が、コミュニティに新人（新入り）として入門し、修行を経て、中堅、ベテラン、そして最終的にはコミュニティのマスターになるという道のりがある。このような実践コミュニティへの参加の仕方を、正統的周辺参加（Legitimate Peripheral Participation: LPP）と呼んだ。

図4.3 実践コミュニティへの参加の過程

正統的周辺参加では、初めから重要な作業をさせてもらえるわけではなく、掃除などの下働きをしながら徐々に仕事を覚えていく。また、明示的にベテランが新人を教育するということではなく、現場での日常の活動の中で新人が自発的にさまざまな知識やスキルを習得していくという過程になる。

レイヴとウェンガーはこのような参加の過程こそが学習なのだ、と主張したものである。そして、参加の結果として、コミュニティの中での自分のポジションあるいは居場所、言い換えればアイデンティティが獲得されるとした。

行動分析学や認知心理学が、学習の過程を知識やスキルを何らかの方法で「獲得する」ととらえたのに対して、正統的周辺参加の考え方では、学習の過程をあるコミュニティに「参加すること」ととらえた。コミュニティに参加することによって、自分の技能と知識が変化し、まわりと自分との関係が変化し、自分自身の自己理解が変化していくことになる。それらすべてを含めて学習ととらえたのである。
実践コミュニティ

『状況に埋め込まれた学習』では、主に徒弟制を実践コミュニティの例として取り上げている。しかし、社会の中には、他にもたくさんの実践コミュニティがある。たとえば、サークル、大学の研究室、断酒グループ、宗教的なカルトなど。

コミュニティの原型は、住む土地で結びつけられた地域社会である。しかし、現代では、伝統的な近所づきあいが薄れてきている。その代わりに、さまざまなテーマで結びつけられた実践コミュニティがある。

実践コミュニティが成立する条件は次の3つである。

第一に「領域」。これはコミュニティメンバーの共通基盤となるテーマである。

第二に「メンバーの交流」。コミュニティでは、お互いの尊重と信頼による相互交流の活動が行われている。

第三に「実践」。実践は、そのコミュニティが生みだし、共有し、維持する特定の知識が蓄積されたものである。伝統もこれに含まれる。

表4.1に、実践コミュニティとその他の機構との比較を示す[注1]。

<table>
<thead>
<tr>
<th>コミュニティ</th>
<th>目的</th>
<th>メンバー</th>
<th>境界</th>
<th>結びつき</th>
<th>継続期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>実践コミュニティ</td>
<td>知識の創造、拡大、交換、および個人の能力開発</td>
<td>専門知識やテーマへの情熱により自発的に参加する人々</td>
<td>暖味</td>
<td>情熱・コミットメント、集団や専門知識への帰属意識</td>
<td>有機的に進化して終わる（テーマに有用性があり、メンバーが共同学習に価値と関心を覚える限り存続する）</td>
</tr>
<tr>
<td>公式のビジネスユニット</td>
<td>製品やサービスの提供</td>
<td>マネージャーの部下全員</td>
<td>明確</td>
<td>職務要件および共通の目標</td>
<td>恒久的なものとして考えられている（が、再編までしか続かない）</td>
</tr>
<tr>
<td>作業チーム</td>
<td>断続的業務やプロセスを担当</td>
<td>マネージャーによって配属された人</td>
<td>明確</td>
<td>業務に対する共同責任</td>
<td>断続的なものとして考えられている（業務が必要である限り存続する）</td>
</tr>
</tbody>
</table>

注1 ウェンガー、マクダーモット、スナイダー『コミュニティ・オブ・プラクティス』翔泳社、2002
コミュニティ

プロジェクトチーム

目的
特定の業務の遂行

メンバー
職務を遂行する上で直接的な役割を果たす人々

境界
明確

結びつき
プロジェクトの目標と里程碑（マイルストーン）

継続期間
あらかじめ終了時点が決められている（プロジェクト完了時）

関心でつながるコミュニティ（コミュニティ・オブ・インテレスト）

情報の得るため
関心を持つ人ならだれでも

曖昧
情報へのアクセスおよび同じ目的意識

有効的に進化して終わる

非公式なネットワーク

情報を受け取り伝達する、だれがだれなのか知る
友人、仕事上の知り合い、友人の友人

定義できない
共通のニーズ、人間関係

正確にいつ始まりつつ終わるというものではない（人々が連絡を取り合い、お互いを忘れない限り続く）

4.5 状況的学習論から教えることへ

真正の文化

状況的学習論の学習観は、知識や技能の習得を、現実のコミュニティの中での仕事や役割を遂行するための手段と位置づけたことに特徴がある。つまり、知識や技能は現実の複雑な文脈の中に埋め込まれ、実際に役に立つものとして位置づけられている。

そうした知識と技能の実践によって、人はあるコミュニティの中での自分の居場所を確定し、それが自己のアイデンティティになっている。そこでは、何のために知識と技能を習得するのかは自明なことである。それは、そのコミュニティでの自分の役割を果たすためにほかならない。

コミュニティでは、伝統という名前で、実践活動が蓄積されていく、伝統の中で、そのコミュニティ特有の文化が成立するようになる。これを「真正の(authentic)」文化と呼ぶ。

学校のカリキュラムと真正性

学校のカリキュラムの中で教えられる内容は、科学者たちや研究者たちが築き上げた理論や世界観、あるいは広く文化を反映している。教科内容を決めたり、教科書を
執筆するにあたっては、そうした専門家たちの意見が色濃く反映されている、つまり、科学者・研究者たちは自分の豊かな文化を学校教育のなかに反映させようとしている。とえば、問題を発見して、仮説を立てたり、データを集めて検討したりして、それを論文にまとめるとのような活動は、科学者コミュニティの中の真正な文化といえる。

しかしながら、たとえそうした意見を持って設計されたカリキュラムであっても、実際の学校の文化は、科学者コミュニティの文化とは異なるものである。

現実の学校の文化というのは、たとえば、与えられた知識をそのまま覚えた試験のためにテクニックに熟達したり、教室の中で先生に気に入られたり、友だちから仲間はずれにされないようにうまく振る舞うことであったりする。それは科学者の正式の文化とはまったく異なる文化である。

科学者の文化を伝えようとした内容が、科学者の文化のない教室に導入されたときには、正しく伝えられないということである。そこでは、何のために、どのようにしていこうかがために、これをやっているのかという暗黙の情報が抜け落ちてしまうからである。

認知的徒弟制

正統の周辺参加モデルの元となった、伝統的な徒弟制では、知識や技能は仕事に使われるものであり、現実の複雑な状況下（文脈）の中で習得されるものとされた。

これは習得にはいくつかの段階がある。まず、徒弟は親方の仕事ぶりを手本として繰り返し観察する（モデリング）。次に、親方の助けと指導を借りて仕事を実行してみる（コーチング）。この段階では、親方は仕事が完成するまで責任を持って援助をする。そして、最後の段階では、親方の支援は徐々に少なくなっていき、最終的に徒弟一人が自力で仕事をこなすようになる（フェーディング）。

図4.4 徒弟制の4段階

この伝統的徒弟制を教育に活かそうとしたのが、ブラウンたち（Brown, Collins & Duguid, 1989）による認知的徒弟制（cognitive apprenticeship）である。これは、
状況的学習と非状況的学習の比較

従来の学習の一環として、状況的学習（伝統的徒弟制）と非状況的学習（学校カリキュラム）の比較が行なわれている。状況的学習は、実環境での問題解決を重視し、対応策を考察する能力を育成する一方で、非状況的学習は、理論的な知識を重視し、手続き的なスキルを育成する。そのため、学習者の個性や目的に応じて適切な学習方法を採用することが重要である。ここでは、状況的学習の問題点と非状況的学習の問題点について考察する。

状況的学習の問題（伝統的徒弟制に見られる弱点）

状況的学習では、以下の問題点が見られる。

• 柔軟性の問題：ひとつのことをひとつの方法でしかできない
• 学習の問題：全体の知識を体系化できない
• 転移の問題：獲得したスキルを文脈の違う状況に適用できない

非状況的学習の問題（学校カリキュラムに見られる弱点）

非状況的学習の問題点は、以下のようになる。

• 動機づけの問題：一体自分が何をやっているのかを見失ってしまう
• 不活性の問題：習った知識を現実生活の問題にどう適用してよいのかわからない
• 保持の問題：抽象的な知識をそれは使わなければすぐに忘れていってしまう

熟達した学習者は、抽象的な知識とスキルを中心に持ち、それを現実のさまざまな状況に適応できることができる。何かを教える立場の人たちの課題は、こうした熟達した学習者を育てるための学習環境を設計することにあるといえるだろう。

注1 Collins, A. 1994 Goal-based scenarios and the problem of situated learning: A commentary on Andersen Consulting's design of goal-based scenarios. Educational Technology 34(9), 30-32
4.6 応用デザイン

状況的学習論によるデザインの工夫

学校教育に見られるような非状況的学習の弱点をカバーするために、インストラクションの中にいくつかの工夫を加えることができる。

学習者が取り組む課題シナリオには、意味のある（現実味のある）文脈を与えるようにする。このことによって、今取り組んでいることがどのようなゴールに向かっているものかを学習者が確認でき、そのことによって動機づけが高まる。

さまざまな方略、知識、ツールを必要とするような複雑さの高い学習環境を設計する。意味のある課題シナリオに対応して、複雑な環境を用意する。ただ頭の中で考えるだけではなく、他のメンバーを含めたさまざまな外部資源を利用していくことによって状況的な学習が促進される。

モデリング、コーチング、スキャフォルディングなどによって、軌道修正の可能性を常に持たせる。学習者が上達するにしたがって助言や支援を徐々に減らしていくことにより、独り立ちできるようにする。

学習によってある程度の課題解決ができるようになったら、まったく新しい課題に取り組まさせるようにする。また自分が何を獲得したかについて意識させることによって、「学習の仕方を学習するスキル」を伸ばす。このことによって、スキルを特定の課題に限定されることのないように拡張する。

ゴールベース・シナリオ（GBS: Goal-Based Scenario）

シャンク（R. Schank）は、状況的学習の特徴を学習コースに現実化する枠組みとして、ゴールベース・シナリオ（Goal-based scenario, GBS）を提案した。

GBSに基づく教材はまず、文脈となるシナリオを提供する。あなた（学習者）の役割はどんなものか、あなたを取り巻く現在の状況はどうなっているのか、を「カバーストーリー」によって記述する。その上であなたのミッション（使命）を明確にする。

そのシナリオの中で、学習者が役割を果たすことによって学習が進んでいく、そのとき、そこで得られる知識やスキルは明示化されない。学習者はシナリオの提供する状況の中で練習をしたり、決断をしたり、表現したりすることを求められる。しかし、それは「これを学びましょう」という形で提供されるわけではなく、ミッションを果たすためにしなければならないことなのである。

ミッションを果たすときには、学習者は一人ではない。必要に応じて、コーチや専門家の話を聞き、フィードバックを受けることができる。また、意思決定をするのに役立つ情報（リソース）にはいつでもアクセスできる状態にある。

以上のようなシナリオと学習環境の中で、与えられた役割をもってミッションをこなしていく。たとえば、環境保護局員という役割で、市民集会の運営を訓練するシステムがある。そのシナリオでは、住民の中の対立するグループの利害を調整していく。
ことが仕事となる。その過程でスピーチをしたり、集会での質問に答えたりしながらミッションを果たしていく。

図4.5 GBSのコンセプト（Cognitive ArtsのWebページより）注1

事例ベース推論

GBSの背景にある学習理論は「事例ベース推論（case-based reasoning）」というものである。私たちは過去の経験から、さまざまな事例を蓄積している。そして、新しい課題解決場面に対するとき、過去の事例集からうまく行くと思われることを期待して対処をする。しかし、ときどきは予期せぬ失敗が起こる。その失敗を体験することによって新しい事例が蓄積される。結果として、それが学習であるということになる。GBSは、学習者にあえて失敗を体験させ、そのことから学習をさせようとしている。

学習される知識やスキルは明示化されないのがGBSの特徴である。GBSによって獲得されることは、文脈の中に埋め込まれた形での知識、スキル、そして態度である。GBSの原則は次のようにまとめられる。

1. 真正性（authenticity）原則：知識、スキル、態度が、現実のなかでそれらを使うことを反映しているような課題と設定に埋め込まれていること。
2. 織り込み（interweaving）原則：課題をやり遂げることと、特定のコンピテンシーを獲得するという2つの焦点を行ったり来たりすること（スポーツでいえば、試合とトレーニング）。
3. 関節化（articulation）原則：学んだことを考えに接合すること、特定の文脈での学習を抽象化すること。
4. 内省（reflection）原則：定期的に自分のやってきたことを内省し、パフォーマンスを他人と比較することにより、効果的な方法を見い出す。
5. 学習サイクル（learning-cycle）原則：「プラン–実行–内省」のサイクルを繰り返すことで学習していく。

注1 http://www.cognitivearts.com/why-we-are-the-best/methodology
PSIとGBSの比較

2章で紹介した個別化教授システム（PSI）とGBSとの違いは、「スキル指向か目標指向か」という方向性の違いにある。PSIでは、学習すべき知識とスキルは単元化され、コースのなかで明示される。そして、それをひとつひとつ完全学習していくことでコースを進めていく。

一方、GBSでは、単元や獲得すべきスキルは明示されない。具体的な事例と到達すべき目標が明示されるなかで、個々の知識やスキルは、その目標を達成するために必要なものとして位置づけられる。

GBSは、実際の人間の行動が、目標指向であるという事実からデザインされている。人間は「何か（目標）を達成したい」ということがあるときに最もよく学ぶという原理に基づいている。

アンカード・インストラクションとGBSの比較

3章で紹介したアンカード・インストラクションとGBSとは、文脈（シナリオ）の役割を重視しているという共通点がある。

一方、大きな違いは、次の点である。アンカード・インストラクションでは、領域固有性によって学習内容の転移が困難であることを克服するために、一般的な知識を意味のある文脈に結びつけようとしている。つまり、転移を促進するために、文脈を利用しているといえる。一方、GBSでは、リアリティのある状況の中で発揮されるパフォーマンスそのものを目指している。そして、それを獲得するためにさまざまな困難、意思決定、リソースの調査などの課題が設定されている。

実践コミュニティを作る機能

状況的学習論が強調したことは、実践コミュニティの役割である。一定の文化を伝承し、メンバーが徐々に流動しつつ、実践活動を行っていくような場こそが個々の学習を成立させていると主張したのである。

このような実践コミュニティを、オンラインで人工的に作るためには次のような機能をもたせることが有効である。

・コミュニティの存在、領域、活動を説明するホームページ
・オンライン・ディスカッションのための話し合いの場
・研究報告書、ベストプラクティス、企画などの文書を集めたレポジトリ
・調べ物をするための検索エンジン
・メンバーが領域内で何を専門としているかの情報を載せた会員名簿
・リアルタイムでの共有空間、遠隔会議
・コミュニティ管理ツール：誰が積極的に参加しているか、どの文書がダウンロードされているかなどを調べるツール

このような機能をもったサイトを設定することにより、実践コミュニティを成立させるような環境をオンライン上で展開することができる。

81
4.7 エピローグ

——アイダさん。結局、状況的学習で獲得されるものは何なのでしょうか。
簡単に言ってしまえば、居場所だね。
——居場所ですか、確かに、最初はどこに居ればよいのか、わからないのが、やっ
ているうちに、だんだんと自分のポジションみたいのが明確になってきますね。
そうなると、自分が何をするべきかがわってくるだろう？
——そうですね、自分は、次にこう動いたらいいんだなっていうのがわかります。
ヤマモトくん、それこそが、態度の学習だと言えないだろうか？
——なるほど、自分がどんなビジョンを持っていて、所属するコミュニティの中で何を
するべきかということがわかれているということが、態度を学習したということなのですね。
もちろん、その根底には、コミュニティが蓄積してきた知識や知恵、ノウハウ、そして、所属
しているメンバーが持っているさまざまなスキルがある。
——そういう知識やスキルがないのに、態度だけ一人前というのは、あり得ませんもの
ね、勘違いしている人ならともかく。
そのとおり、態度というのは、運動技能と認知技能を統合するものだから、それだけを学習
するというのはナンセンスだ。
——そう考えると、生徒の勉学への意欲を測ろうとして、手を挙げる回数を数えるのは
ナンセンスですよね。
何かを測る指標を決めたとたんに、その指標では測れなくなってしまうという、落とし穴だ
な。
——難しいですね。
難しい、なぜかというと、態度というものは、真空の中では存在しないからだ。それは、必
ず、基盤となるコミュニティとその文化という背景（あるいは文脈）を想定しなければ、考え
られないからだ。
——しかし、現代はコミュニティが崩壊していますよね、地域コミュニティとか、学校
を中心としたコミュニティも強いうものではないし。
昔に比べればそうだね、でも、企業でもコミュニティ的な性格を持っているところであるし、
インターネット上のSNSでも、無数のコミュニティが存在する。
——そういう意味では、コミュニティの数は増えているんですね。
そのそれぞれのコミュニティの中で、自分の居場所を見つけるわけだ。
——その中で、正統的周辺参加をしながら、しきたりやふるまい方、伝統を身につけて
いくんですね。
そういう意味では、オンラインのコミュニティも、古いコミュニティと同じ形式を保っている
わけだね。

82
文献紹介

レイヴ, ウェンガー『状況に埋め込まれた学習—正統的周辺参加』, 産業図書, 1993
　いくつかの徒弟制度を文化人類学的な視点で論じ、実践コミュニティに参加していく過程こそが学習であるという主張をした本。
　著者は、この考え方を学校教育や教育場面に直接応用することを慎重に避けているが、逆にそのことが示唆を与えている。

ウェンガー, マクダーモット, スナイダー『コミュニティ・オブ・プラクティス』翔泳社, 2002
　『状況に埋め込まれた学習』では、文化人類学的な徒弟制度の分析を取上げている。一方、この本では、企業の中の実践コミュニティを取り上げている。
　共通の専門テーマと相互交流によって非公式に結びついた実践コミュニティがどのようなものかを記述している。

ガブリエル・ソロモン編『分散認知』, 協同出版, 2004
　「われわれは、学校とは生徒が学ぶことを学ぶコミュニティであるべきだと考えている。そこでは教師は、個人的にも他者と協力する場合にも、意図的学習や自発的な学問研究のモデルであるべきである。もし、うまくいけば、そのようなコミュニティの卒業者は、多くの領域でいかに学ぶかを学んだ生涯学習者として準備がでているはずである」
　この本は、個人内の認知的スキルを重視する認知主義と、外界の人工的／自然環境に規定されるとする状況主義を対比させながら、それらの双方が相互に影響し合って学習が進んでいくというビジョンを各章の筆者が描き出している。
■ホームワーク4

(1) コミュニティへの参加経験を客観的に書く（50点）

自分が、あるコミュニティに所属して、どんな体験をしたかについて、400字以内で書いてください。そのコミュニティの目標や規模、運営方法、活動内容などについて、客観的に記述します。そして、自分がそのコミュニティに入り、どのような経験をしていったかについて、客観的に記述してください。

取り上げるコミュニティとしては、次のような例が考えられます。

・サークル、部活動
・勉強会、研究会
・ボランティアグループ
・PTA
・町内会
・会社、会社内の部署
・SNSなどでのオンラインコミュニティ

(2) 参加経験の中で、自分がどのように変わっていったかを書く（50点）

(1)で記述したコミュニティへの参加経験の中で、自分がどのように変わっていったのかについて、400字以内で書いてください。特に、コミュニティの中で、変化のきっかけとなるような出来事や体験に注目して、それが自分にどのような影響を及ぼして、自分がどのように変わったのかについて、よく内省した上で、記述してください。
5. ニーズ分析とゴール設定

5.0 プロローグ

——アイダさん、こんにちは。
やあ、ヤマモトくん、こんちは。
——ここまで、運動技能、認知技能、そして態度のインストラクションを学んできました。これでどんなことでもうまく教えられますね。
とりあえず、一通りのインストラクションの技能は授けた。
——ありがとうございます！ さらに学ぶことはありますか？
もちろん、学ぶことは終わりがない。
——確かにそうですね。次に学ぶことは何でしょうか？
インストラクションは、長くても、限られた時間内での１回分の教える行為だ。
——覚えています。複数のインストラクションを組み合わせて、コースを作るのですよね。
それ通り、そこで、これからは、コースの設計について学んでいくよう。
——１回のインストラクションで学べることって、限られていますからね。
だから、コースを設計する。コースの設計を学ぶことによって、具体的に「教える」という行為は、あくまでも、コース全体のごく一部にすぎないのだ、ということを理解してほしいんだ。
——教え始めるとき、熱が入ってしまう。教えるときに全部のエネルギーを注いでしまいかがになる。
まあ、やる気なく教えるよりはよいだろう。だけど、インストラクショナルデザインの考え方は、究極的には「先生」がいなくても、学習が起こるような環境を目指している。
——先生がいないコースですか？
そう。「先生がいてくれる」ということは、いつまでも自分は「学生」のポジションに安住するということだ。それは一定期間必要なことではあるけれども、いずれ、独り立ちしなくてはならない。
——そういわれればそうですね、いつかは「卒業」の時が来る。
コースにも、始めがあって、終わりがある。何のためにコースを作るかといえば、ある特定の技能に関して、学び手が「独り立ち」できるようにすることにほかならない。
——そうなんですね。でも、現実には、不全感の残るコースも多いです。そうならないように、コースの設計について学んでいく。
5.1 コースの設計

コースの要素

コースは、特定された運動技能、認知技能、あるいは態度を習得させるという一貫した目的を持ったインストラクションの集合である。
コースは、以下の6つの要素を持つ。

1. ニーズ
2. ゴール
3. リソース
4. 活動
5. フィードバック
6. 評価

ニーズは、このコースの原動力になるものである。個人が何らかの技能を習得したいと思うこと、あるいは組織がある個人に何らかの技能を習得させたいと考えていることがニーズである。ニーズがなければ、コースの設計は始まらない。コースの設計は、まず、ニーズを調査し、分析することから始まる。

ゴールは、このコースの終着点を示すものである。個人がこのコースを受けたときに、最終的にどのような技能が、どれくらいのレベルで習得されているかということを示したものがゴールである。

リソースは、このコースでの学習に有用な資源、あるいは学習材料である。典型的には、テキスト、文献、実習用の材料、ビデオ教材、などである。講師によるレクチャーもまた、そこから学ぶための材料という意味で、リソースに含まれる。

活動は、コースの中で個人が行うあらゆる行動である。たとえば、レクチャーを聴いてノートを取ったり、テキストや文献を読んでまとめたり、あるトピックについて他の参加者と話し合ったり、ロールプレイを行ったり、レポートを書いたり、スライドを使ってプレゼンテーションをおこなったりすることなどである。

フィードバックは、個人の活動に対して提示される反応である。話し合いやロールプレイなどにおいて、他の参加者から受け取る反応はフィードバックである。また、提出したレポートに対して教え手からなされるコメントや評価もフィードバックである。

評価は、コースの中で個人のパフォーマンスを測定することである。厳密にいえば、コースを受ける前のパフォーマンス（事前テスト）が、コースを受けることにによって、どれくらい伸びたのか（事後テスト）を測定する。直接的には、個人のパフォーマンスの伸びを測定するわけであるが、これが、そのままそのコースの有効性の指標となる。つまり、個人のパフォーマンスを測定するのは、その個人の評価をするのが目的なのでなくて、コースの有効性を確認するためにある。
宇宙船モデル

コースの全体像をモデル化したものを提示しよう。その形から「宇宙船モデル」という名前をつけておく。

図5.1 宇宙船モデル：コースの全体像

この宇宙船のエンジンにあたる部分がニーズとなる。このニーズが、コース全体の推進源になる。ニーズは、コースが始まってしまうと表には出てこない。しかし、推進源という意味で重要である。

宇宙船の先頭に来るのが、ゴールである。ゴールを目指してコース中のひとつのニーズが進んでいく。

胸体部分が、学習者が行う活動である。左側の翼がリソース（学習のための資源）、右側の翼がフィードバックとなる。

宇宙船モデルのパーツは、ひとつひとつ独立している。その上で、全部が組み合わさって、ひとつのコースを構成している。したがって、どこか一箇所が欠けただけでも、この宇宙船はうまく飛ばない。ニーズをあいまいにしたまま、コースを実施すれば、失敗するだろう。また、ニーズがはっきりしているのに、ゴールが不明確であれば、コースは迷走する。また、リソースとしてのレクチャーだけを提供して、学び手の活動やそれに対するフィードバックがなければ、一方通行の講義となるだろう。

したがって、これらの全てのパーツを組み合わせ、一貫性のあるデザインをすることが重要なのである。

5.2 ニーズ分析

教えるということを仕事にしている人は「何か（私の教えられるものを）教えたい」と本能的に思うかもしれない。しかし、インストラクショナルデザインでは「誰
あるべき姿 - 現状 = ニーズ

ニーズとは、自分が実際にこういうたいと思うあるべき姿から、現状を引いたものである。

本当はこうやりたい（あるべきパフォーマンス）のに、こうしかできない（実際のパフォーマンス）という状況がある。その両間にギャップがある。これを、パフォーマンス・ギャップと呼ぶ。

図5.2 パフォーマンス・ギャップ

このパフォーマンス・ギャップを埋めるために、何かを学ばなければならないニーズが、インストラクショナルデザインの出発点になる。パフォーマンス・ギャップを埋めるために、どういうコースをデザインし、どういうことを実施し、どういうフィードバックをするのかという設計が出発する。

ここで、問題となるのが、この「あるべき姿」を誰が決めるのか、ということである。

学習者のニーズ

学び手自身が「自分がこうなりたい」というあるべき姿を考えるとき、これを学習者のニーズと呼ぶ。

組織のニーズ

ある組織が、個人に対して「こうなってほしい」というあるべき姿を考えるとき、これを組織のニーズと呼ぶ。たとえば、ある会社で勤務するときには、その会社の標準としての能力が求められるだろう。また、ある部署に所属すれば、その部署特有の能力基準が求められることもあるだろう。このように、個人が所属する組織は多重的であるので、それぞれがニーズを提示してくることになるだろう。したがって、組織で
働く個人は常に周囲から「こうなってほしい」というニーズを感じることになる。それ故に、個人の能力を開発する原動力ともなるのである。

社会のニーズ

tとえば、小学校を卒業した時に、どのくらい漢字を覚えておいて欲しいかという「あるべき姿」は個人で決められるものではない。小学校卒業時には、この程度の漢字を覚えておいた方がよいということが、社会全体として決められる。すなわち、社会全体の利益と社会の中で生きる個人の利益を考えあわせて、必要なあるべき姿が規定される。これを社会のニーズと呼ぶ。

領域専門家からのニーズ

社会の一部としての、領域専門家からのニーズがある。たとえば、歴史の研究者たちが、領域専門家のコミュニティを形成する。その専門家のコミュニティが、この程度の日本の歴史を覚えておいたほうがよいと要望を出すケースがあるだろう。これが領域専門家のニーズである。

しかし、領域専門家のニーズが必ずしも社会のニーズに合致しているわけではない。なぜならば、社会全体から見ると、領域専門家コミュニティには特殊な人間が集まっているからである（だからこそ領域専門家と呼ばれる）。領域専門家のニーズとして提出されたものであっても、時として社会としては的外れであることもある。よって、領域専門家のニーズの場合も、学習者のニーズや、社会のニーズによってチェックしていくことが必要である。

このように、単にニーズと言っても、学習者のニーズ、組織のニーズ、社会のニーズ、そして領域専門家のニーズがある。そして、これらのバランスを考えることが重要である。とりわけ、インストラクションデザインの観点では、まず学習者のニーズを重視することが求められている。

5.3 ゴール設定

教育ゴール

ニーズが決まるとゴールが決まる。このゴールを教育ゴールと呼ぶ。ゴールは、学習者がコースのインストラクションを受けた結果、何ができるようになるのかを記述したものである。

教育ゴールを考えるポイントは、「その行動を明確に、そして観測可能な形で書く」ということである。

観測可能な形というのは、「知る、理解する、親しむ」といった動詞である。たとえば、「情報社会における生活の危険性について知る」とか「情報社会でいかに
良好な能力を理解する」、また「パソコンやインターネットに親しむ」と書かれても、その人が「知らない、理解する、親しむ」という状態になるかどうかは、観測不可能である。

これを観測可能にするためには、具体的に「〇〇についてこのようなことを知っています」と言ってもらったり、「1から10までを足し算するようなプログラム」をC言語で作ってもらえることが必要である。その結果、行動が観測可能となり、目標が達成されたかどうかを判断することが可能になる。

教育ゴールでは、「どんなときに（条件）」、「どんなことが（行動）」、「どの程度できればよいか（基準）」を考える。たとえば、テニスのサーブを例にあげると、ダブルフォルトをせずに、ボールを正しくサーブできることが教育ゴールとなる。しかし、このままでは、まだ具体的になっていないので、条件・行動・基準を考えると、たとえば、正式なコートを使って（条件）、サーブを打って（行動）、20本中16本以上入れればよい（基準）とする。これは誰が見ても観測可能なので、教育ゴールとして採用できる。

ゴール分析

ゴールを決定すると、そのゴールを達成するためにどのようなステップをすればよいのかということを分析する必要がある。たとえば、「テニスのサーブを打つ」という運動技能のゴールを設定すると、「正しい位置に足を置く」、「ボールを適切にトスする」、「それに対してラケットを振りぬく」「打った後、次の球に備えて構える」という4段階のステップが設定できるだろう。このように、最終的な教育ゴールを、下位のゴールに分解することをゴール分析と呼ぶ。

運動技能と認知技能では、上位のゴールは複数の下位のゴールに分解できる。サーブをするというのは一番上位のゴールであり、「足のポジション」、「トス」、「ラケットの振りぬき」、「構える」は4種類の下位ゴールである。

さらに、「トスを上げる」という行動は、「ボールをキチンと握る」、「ボールを下から上にまっすぐ投げる」、「適度な高さまで上げる」の3つに分解できる。

このようなパターンを階層型と呼ぶ。

図5.3 階層型のゴール分析
5.4 学習者分析

インストラクショナルデザインでは、学習者のニーズがあって、そして学習者のゴールがあり、そのゴールを学習者が達成するということが目標となる。学習者がゴールに到達できるようにするために、学習者がどういう人なのかということを把握しておく必要がある。

たとえば、学習者が、これから学ぶ内容についてどれほどの知識があるのかどうか、また学習者が学ぶものに対してどのような態度を持っているのか、ということを知っておかなければならない。また、学習者の動機づけ、すなわち、どれほどやる気があるのかということでも知っている必要がある。そして、学習者の学び方の好みのスタイルを知っておくことも重要である。

学習者の既有望知識

最初に、学習者が学習内容についてどれくらいの知識（既有望知識）を持っているかを確認する。通常のコースでは教えられる時間が決められている。たとえば、1時間とか、半日で学ぶ、とか、2泊3日の研修、あるいは15週間で学ぶなどというように、始めと終わりがある。その期間内で教育ゴールを達成しなければならない。

そのためには、はじめの段階でコースの内容に無理なく行けるような知識を持っている人を学習者としなければならない。そのために前提知識を確認する、もし前提知識のない人であれば、そのコースに入る前にその知識を得ておく必要がある。あるいは逆に、教えようとする内容がすでに学習者に獲得されているようなケースもある。この場合は、このコースをスキップしてもらう方が時間の無駄にならないだろう。

学習者の態度

次に、学習者の内容に対する態度も知っておく必要がある。無関心なのか、積極的なのか、あるいはどうでもよいなどと思っているのか知ることは重要である。どうでもよいと思っている場合は、学習者にニーズがないことが考えられる。または、その人がそのニーズに対して気づいていない場合もあるだろう。

たとえば、大学では、1年生の授業で、討論やレポート、パソコンの使い方、インターネットの方法、検索、データベースなどを学ぶ。しかし、このことに対して「どうでもよい」と思っている学生は積極的な態度を取る。そうすると、なんとなく授業に出席しても、スキルが得られず、その後、本格的に授業が始まったら、課題などで、インターネットで調べ、データベース検索やレポート記述などパソコンを使うため、「やっておけば良かった」と後悔することになる。学習者が積極的であれば問題はないが、消極的・無関心であれば、「あなたにはこういうニーズがありますよ」として「それに気づいていないだけですよ」と伝える必要がある。そうすることによって、コースに対する積極的な態度をまず形成するのである。
学習者の動機づけ

動機づけも重要である。コースを提供される学習者が、そのコースに対して動機づけされている場合は、そのコースは効果的である。しかし、そもそもやる気がない場合は、効果が少ない。そういう場合は、まず学習者の動機づけから入る必要がある。

動機づけに関するひとつのモデルとして「期待・価値モデル」がある。これは、式で表現すれば、

![動機づけ](期待) x 価値

というものである。

ここでいう期待とは、「自分がどれだけうまくできるか」という期待である。
また、価値とは、このコースが「自分にとってどれほど価値があるか」ということである。

期待も価値も高いコースの場合は学習者は強く動機づけられる。しかし、そのようなケースばかりではない。コースの価値が自分にとって十分高い価値であっても、その後うまくやっていくことができない場合は、掛け算なので動機づけは0になってしまう（つまりやる気を失う）。逆に、うまくできる期待が高くなっても、価値が低い場合、すなわちコースの内容が易しすぎて、パーフェクトにできるのであれば、それは時間つぶしになってしまうだろう。この場合も、動機づけは下がってしまう（時間をかける価値がない）。

このように、コースの価値だけを高めても、必ずしも学習者の動機づけが高まるわけではない。コースの価値を高めるためには、しばしばそのコースの難度を高くするので、学習者がコース内で成功する期待を減らしてしまう。そうすれば、学習者の動機づけは下がってしまう。コースの設計にあたっては、学習者の動機づけを最大にするように、コースの価値と、コース内での成功体験の期待をうまくバランスさせることか肝要である。

学習スタイル

最後に、学習スタイルの好みも重要である。教育心理学の研究は、学習者一人一人はそれぞれの多様なスタイルで勉強することを明らかにしている。たとえば、本を読むのであれば、音読をしないと頭に入らない人もいるし、音読をするとかえって遅くなり、速読のほうが理解できる人もいる。また、図解が入っていないとわからない人がいる一方で、図解よりも箇条書きのほうがわかりやすい人がいる。このような本を読むスタイルひとつをとってみてもいろいろな学び方がある。

重要なことは、自分の好みのスタイルではない形で学習した場合、効率が落ちることである。学習者が一人の場合は、その学習者にスタイルを聞いて変更することが可能である。しかし、数十人から数百人のコースでは、多様な学習者がいても、一人一人に合わせることはできない。
図5.4 学習スタイルの多様性

このような場合では、さまざまな学習スタイルの人がいることを考慮して、できるだけ多様な手がかりを提供することを心がける必要がある。

5.5 コンテキスト分析

学習コンテキスト

コースは一定の制約の中で実施される。たとえば、次のような制約がある。

・使える施設や設備（教室、会議室、ホワイトボードなど）
・使える資源（プリント配布、スライド、レクチャーなど）
・物理的な制約（時間的な長さ、教室の広さ、体を動かせるかなど）
・一緒に学んでいる仲間

このような制約の中でコースが実施され、その中で学習者が学んでいく。このような中で、コースが実施される環境は、学習コンテキストと呼ばれる。

パフォーマンスコンテキスト

学習コンテキストの中で何らかの技能が獲得される。獲得された技能は、学習コンテキストとは別の現実的な条件の下で発揮されることが期待される。技能が発揮される現実的な状況を、パフォーマンスコンテキストと呼ぶ。

学習コンテキストで得られた実際の知識やスキルが、現場ではどのように活かされるのかを常に確認しておく必要がある。なぜなら、教室では上手くできたにもかかわらず、現場に出ると全く役に立たないケースがある。しばしば見られるからである（認知心理学の領域固有性）。そうならないためには、学習コンテキストを、パフォーマンスコンテキストに関連付けてデザインをする必要がある。
教科書と教室が不利な理由

以上のような意味で、伝統的に行われている教科書を使い、レクチャーをして理解させるのは、もっとも効率の悪い方法であることがわかる。なぜなら教科書のコンテキストと実際のパフォーマンスは違うものだからである。

教室の外に出れば、そこには教科書はない。レクチャーをする人もいない。その中で、自分で試行錯誤し、経験を積み、より良い方法を探して学習していくことになる。このように、学習コンテキストとパフォーマンスコンテキストが全く違うものであれば、せっかく習得した技能も転移しにくいものになる。コースをデザインする側は、現場では、習得された技能がどう活かされるのかを考えてデザインする必要がある。

5.6 事前・事後テスト

インストラクショナルデザインはテストを好む。しかし、このテストは通常、学校で行われているようなテストではない。

前提テスト

まず、始めに前提テストを行う。このテストによって、学習者がコースを受ける準備ができているかを確認する。たとえば、授業で表計算の計算式の使い方を教える場合であれば、前提テストで表計算の基本操作（データの入力やコピーなど）をどれほど使えるかテストする。もし、前提となるような技能がなく、そのテストがクリアできなければ、実習をしてそのレベルまで引き上げる。逆に、テストをクリアできれば、そのままコースに入る。

事前テスト

次に、事前テスト（プレテスト）を行う。コースを受ける直前に、その学習者がすでに習得している技能がどのようなものであるかを確認する。これから教えようとするスキルが習得済みということもありうる。すでに知っていることを教えられることほど無駄なことはないので、このような技能はコースの中では省略する。

理想的には、事前テストで0点を取ってもらうと良い。もし事前テストで100点を取れば、その学習者はこのコースを学ぶ必要はない。

事後テスト

インストラクションを実施した側は、ゴールがきちんと達成できたかを確認する義務がある。そのために事後テスト（ポストテスト）を行う。もし、学習者が最終目標を達成していなければ、それは学習者の責任ではなく、コースを実施した側が不十分であったと言える。すなわち、不合格なのは学習者ではなく、コースそのものであ
ル。インストラクショナルデザインでは最終的に学習者を責めない。もし学習者の事後テストが悪ければ、それはコースをデザインした側に責任があり、実施方法が悪かったという証明に他ならない。

たとえ客観的に見て良いコースであっても、何も努力しない学習者の場合は、事後テストの成績は悪くなるだろう。そのような場合でも、コースに責任があるのかと疑問に思うかもしれない。

その通りである。何も努力しない学習者がいたとすれば、それはこのコースを受けるニーズを感じていたのかかもしれない。そのために動機づけがなされていれば、これをコースはフォローしなければならない。あるいは、このコースを十分に理解するだけの前提知識がなかったのかもしれません。この場合も、前提テストを実施して、コースについていけるだけの十分な技能が備わっていない学習者は、コースに入れないようにしなければならないのである。

模擬テスト

以上のテスト以外に、模擬テスト（中間テスト）を行うことがある。これはコースが長期にわたる場合で、学習者の習得状況を確認し、学んだ内容に対して誤解がないかどうか、またベースが速すぎたり遅すぎたりしていないかを確認するために実施する。

5.7 エピローグ

一一なるほど、コースを設計するには、まずニーズを検討するのですね。

その通り、世の中にはニーズを検討しないまま、「このようなことが教えられる【べき】である」として設定されているコースが多い。

一一学び手が、「なぜこのコースを受けなければならないのか」ということをキチンと納得していなければ、教えられる内容が身につくはずもないですね。

だから、コースの一番最初に「なぜこれを学ぶことが必要なのか」ということを説明して、納得してもらわないといけね。

一一でも、教え手にとっては、今自分が教えていることは、「みんなに必要なこと」だと思っていますから、そこらへんのことはあまり説明しないんですよ。

そうだね、教え手は、いつでもその手の「妄想」を持っているよ。本当に、全員が学んでおく必要のある内容なんてそうそうないのに。

一一まず、学び手が、自分自身でニーズを感じなければ、学ぶことはスタートしませんよね。

学び手の準備ができていないのに、いくら教えても時間のムダだよ、それどころか、その内容が嫌いになってしまう、ネガティブな副作用までついてくる。

一一いったん嫌いになってしまうと、本当にそれが必要になったときに、困りますね。
コースを設計して、実施するにはコストがかかるので、そのコースを実施する必要性、つまりニーズがあるのかどうかを十分に検討しなくてはいけない。
——そのニーズも、絶対的なものではないんですよ。
そうだ。ニーズは学び手と文脈によって決まってくる。
——その文脈というのは、個人的なものだったり、組織的なものだったり、社会的なものだったりするわけですね。
それによってゴールも変わってくる。
——そう考えると、ニーズ分析とゴール設定は重要ですね。
そうなんだ。ゴール設定ができれば、それによって事前テスト・事後テストが作れる。テストが作れれば、コースの内容が決まってくるというわけだ。
——それだけゴール設定が大切なことはわかりますが、なかなか簡単には決まらないんじゃないでしょうか。
そうだね。これは、認知技能のインストラクションのところで出てきた、不良構造化問題のひとつなので、簡単には決まらない。
——簡単には決まらないとしても、ニーズとゴールについて十分に考えておくことは必要ですね。
そういうことだ。

文献紹介

鈴木克明『教材設計マニュアル—独学を支援するために』, 北北大路書房, 2002

■ホームワーク5

以下の内容を、全体で800字〜1000字で記述してください。見出しは、以下の通りとします。適宜、段落を変えしてください。
タイトル：（どんな人）に、（どんな技能）を、（どれくらいの時間で）教える

1. ニーズ分析
2. 教育ゴール
3. 学習者分析
4. コンテキスト分析
5. 事前・事後テスト

(1) ニーズ分析（20点）
あなたの回りにいる人で、何かを学ぶ必要のある人を想定してください（必ずしも実在しなくてもよい）。その人が「ここまでできる」けれども「こうなりたい！」というニーズを設定して、それを記述してください。
（例）
・就活中の人が、グループディスカッションでのリーダの仕方を学ぶニーズ
・部署に新しく配属された人が、Excelで計算式を使う方法を学ぶニーズ

(2) 教育ゴール（20点）
(1)の想定に基づいて、ゴール分析をして、教育ゴールについて記述してください。

(3) 学習者分析（20点）
想定した学び手について、学習者分析をして、それを記述してください。既に知識、態度、学習スタイルについて、記述します。

(4) コンテキスト分析（20点）
学習コンテキストとパフォーマンスコンテキストについて記述し、その違いをどう埋めるかについても記述してください。

(5) 事前・事後テスト（20点）
学び方がコースの内容を習得したかどうかを測るための、事前・事後テストについて記述してください。事前・事後テストの内容は同一のものでかまいません。
6. リソース、活動、フィードバックの設計

6.0 プロローグ

——アイダさん、こんにちは。
やあ、ヤマモトくん。
——前回は、ニーズとゴールを中心に、コース設計の大枠を教えていただきました。
今回は、リソース、学習活動、フィードバックの設計をしよう。
——それは盛りだくさんですね。
この3つは互いに依存しあっているので、まとめてやったほうがよい。
——どういうことですか？
どんなリソース、つまり学習資源を用意するのかは、学習活動としてどんなことをするのかということに依存して決まる。
——なるほど、いつでもテキストを用意すればよいというわけではないのですね。
まあ、テキストはあったほうがよい。だけど、そのテキストをどう使うのかが重要だ。また、学習活動の内容によって、分厚いテキストを使うのか、あるいは、簡単なプリントを使うのかが決まってくる。
——そして学習活動の内容は、ゴールによって規定されるのですね。
そうだ。そしてゴールはニーズによって決められる。つまり、宇宙船モデルのひとつひとつのに
ーパーツは互いに強い依存関係にある。
——宇宙船モデルに従えば、設計されたものは、一貫性のあるシンプルなコースになる
わかりですね。
そういうコースを設計しよう。
——フィードバックってなんですか？
フィードバックは、学習者が行った学習活動に対して、何らかのコメントを返すことだ。これ
がなければ、せっかく学習活動をしても、やりっぱなしになってしまう、学ぶ量が少なくなっ
てしまう。
——せっかくやったのですから、それに対する評価がないと寂しいし、やる気を失いま
すよね。それが良い評価であれ、厳しい評価であれ、
学び手に何かをさせたなら、それに対するフィードバックをするのは教え手の義務だよね、
そうでなければ意味がない。
——実際に自分が何かをして、それに対するコメントをもらうことで、いろいろなことを
学んでいる気がします。
6.1 導入の設計

導入の重要性

教えるべき内容を扱った学習活動に入る前に、導入のセクションが置かれる。これはコースの初めに、必ず置かなくてはならない。また、毎回のインストラクションでも短い導入を置いたほうがよい。短い時間であっても、導入を置くことによって、その後のインストラクションを効果的にすることができる。

導入には、ラポールの形成、方向づけ、動機づけの3つの機能がある。以下にそれぞれを説明する。

図6.1 ラポール、方向づけ、動機づけ

ラポールの形成

ここで言うラポールとは、教え手と学び手の関係を作るということである。臨床心理学の用語では、ラポールとはセラピストとクライエントとの心理的関係を指している。良い治療を行うためには、セラピストとクライエントがお互いに信頼関係を持つことが前提条件となる。したがって、ラポールの形成が、最初の重要な仕事になっている。

同様に、コースにおいても、教え手と学び手が互いに相手を信頼していなければ、学習は起こりにくくなる。教え手が学び手を信頼していなければ、コースは罰則だけのきゅうくつものになるだろう。逆に、学び手が教え手を信頼していなければ、学び手は疑心暗鬼な状態におちいるだろう。お互いの信頼関係を形成するためには、ラポールの形成が必要である。

良いラポールを形成するためには、導入でどのようなことをすればよいのだろうか。それは以下の3点にまとめられる。

1. 敎え手自身の自己紹介やパックグラウンドを紹介する
2. 敎え手が、どのような意図でコースを提供しているかを説明する
3. 敎え手が、学び手にどのような成果を獲得してほしいかを説明する
以上のいずれの点についても、「教え手自身がどのように考えているか」ということを明確に、しかも自分の言葉で説明する必要がある。この時点で、教え手が「単なる仕事としてこれをやっている」というような雰囲気を出てしまったら、それは確実に学び手に伝わり、その結果として、ラボールの形成はうまくいかないだろう。

方向づけ

方向づけとは、コースにおけるゴールが何なのかを学び手に思い出させることである。特に長期にわたるコースでは、学び手がどこに向かって進んでいるのかを、折にふれて思い出す必要がある。そうでないと、学び手自身が今取り組んでいることが、一体何のためにやっているのかということが曖昧になってしまうからである。

コース内のインストラクションの中には、一見、ゴールとは無関係に見えるものも含まれているかもしれません。教え手のほうがからすれば、もちろんそれはゴールとの一貫性を持ったインストラクションとして設計しているのである。そうしたときに、そのトレーニングが、学び手が目指すゴールとどのような関係があるのかを説明することによって、学び手は迷うことなくインストラクションに臨むことができる。

動機づけ

動機づけとは、学び手のニーズがこのコースとどのような関連性を持つのかということを、学び手に思い出させることである。ニーズは、学び手自身のパーソナルなニーズ、組織からのニーズ、領域専門家からのニーズ、社会からのニーズがある。このいずれの場合にしても、このコースに参加することによって、そうしたニーズが満たされる可能性があることを、教え手は常に示唆しなくてはならない。

そうすることによって、学び手はコースに対する動機づけを高く維持することができる。ニーズを満たす可能性があるということが、つまり、そのコースの価値がある。学び手がそのコースに価値を見出すためには、学ぶニーズを思い出させ、それがコースに結び付いているということを適宜説明することである。

6.2 リソースの設計

リソースとは、学び手が学ぶ際にその環境として提供される学習資源のことである。たとえば、教科書、ワークブック、プリント、インターネット上の情報、書籍などが典型的なリソースである。そして、教え手が提供するレクチャーもまたリソースである。また、同じ場にいる人々と議論をする場合、その議論の内容もまたリソースとなる。つまり、学び手が学ぶ環境に存在する情報はすべてリソースとして捉える。
テキスト

教科書、ワークブック、マニュアルなどの印刷物は、よく使われる学習リソースである。これらを自作するのか、あるいは既存のものを利用するのかは設計者が判断する。

一般的に、すでに確立された内容のコースであれば、良い教科書が存在するので、それを利用するのがよいだろう。しかし、最先端の内容であったり、また、最新のトピックを扱うような内容であれば、まだ教科書が確立されていないかもしれない。そのような場合は、リソースを自作することが必要になる。

リソースを作成するには、それを学習活動の中でどのように利用するのかを考える。独自の作成方法を用意するのか、あるいは、参考資料として利用するのかによって作成方法が変わってくる。同時に作成するための時間をコストが変わる。

レクチャー

教え方が行うレクチャーもまたリソースのひとつとして考える。もし、あるインストラクションの時間すべてがレクチャーで占められるとしたら、それは効果的なものになりうるのかどうかという視点で設計する必要がある。

一般的に、大勢の学び手の前で行われるレクチャーは、学び手の人数で割ったコストは安価である。逆に言えば、コストが安いかからこそレクチャーが多用されることもある。

レクチャーによって効果的な学習が行われるかどうかを検討した上で、レクチャーを学習リソースとして提供するかどうかを判断したほうがよい。同時に、レクチャーの代わりにテキストやプリントが使えないかどうか、また、リアルタイムのレクチャーではなく、事前にビデオを視聴させておくなどの方法も検討したほうがよいだろう。

6.3 活動のデザイン

教師中心から学習者中心へ

1990年代から、学習の捉え方が、教師中心（teacher-centered）から学習者中心（learner-centered）へと変わりいった。これまでの伝統的な学校システムに見られるように、教師中心の学習とは、教師が学習者をコントロールし、授業を運営する、教師がどのように学習者をコントロールするかという点が重要であった。しかし、教師が一生涯学習者をコントロールしたからといって、学習者がそれに従い、学習するという保証はない。
見るべきは、実は教師側ではなく、学習者が何をしているかという点である。すなわち、学習者中心主義においては、学習者が自己自身の学習を制御することが大切だという見方をする。これは学習者に責任と積極性を持たせるということである。

教師中心主義の時代では、教師が学習に責任を持ち、その責任を果たすために細かな指導を学習者に対して行っていた。一方で、学習者は自分の学習に対して無責任であったともいえるだろう。これでは、学習者に実質的な学習が生まれるという保証はない。

しかし、学習者中心主義においては、学習者に責任を持たせることで、学習者は学ぶためにはただっただと思っているわけではない。自分が積極的にならなければならない。そうすることによって実質的な学習を生み出そうとする。

教師の役割

では、学習者中心主義における教師の役割とは何なのだろうか。ここでは、教師は全体を見るモニタリングの役割（スーパーバイザー）、または授業全体の開発者という役割を果たす。教師は、教室全体、コース全体のデザインに責任をもち、最終的にそれがうまく動いているかをモニタリングし、評価し、改善していくことになる。すなわち、教師は実際の授業やコースをどのように運営するか、という点よりもむしろ、どのように学習者の活動をデザインするかという点に力点が置かれる。

コーチ、メンター、ファシリテーターの役割

このような学習方法に変わったことによる副産物として、コーチ、メンターという存在が重要視されるようになった。学習者は自分が学習することに責任を持ち、教師は、授業全体の設計に責任を持つ。教師は教壇から立ち去り、代わってそこに立つの学習者自身になる。しかしそうすると、教師と学習者との間に距離ができてしまう。

教師と学習者との間隔を生めるために、両者を仲介する人（存在が必要となる。それのがコーチ、メンターという存在である。コーチ、メンターの役割は、直接学習者に対して教えるのではなく、より学習者に近い立場で学習者を支援する役割を担う。

また、コーチ、メンターに似た言葉で、ファシリテーターという役割がある。グループワークやワークショップなど実習系の活動を教師がデザインしたときには、その場において学習者を支援する役割をファシリテーターが果たす。

実際の活動のデザイン

以上のような流れがインストラクショナルデザインにおける最近の動向である。学習者中心主義という考え方が出てきたのは1990年前後のことであり、その後は、このような考え方がインストラクショナルデザインにおいても中心となっている。

では、どのように活動をデザインしていけばよいのだろうか。活動は、能動的な活動と、受動的な活動の二つにわけられる。
効率のよいレクチャーとテキスト

レクチャー、テキストというリソースにより行われる活動は、一見して単なる受動的な活動と捉えられないからである。しかし、一方で，知識伝達のためには効率のよい方法であることがわかる。学習の初期の段階で，ある一定の知識を得るためにはレクチャーやテキストを利用して学習するのは，効率のよい方法であるといえる。

しかし，ただ聞いただけでは受動的な学習活動となってしまう，その学習内容が残らないというリスクもある。その場合，学習を自分のものにするために，受動的な学習を能動化する必要があり，そのための策が必要となる。

たとえば，レクチャーを聞いたあとに，「質問する」，または「反論する」といった能動的な活動が必要とされる課題を置くことで，レクチャーによる活動を能動的に変えることができる。また，「テキストの内容を自分の言葉で言い換える」，または「自分の言葉でまとめる」という課題を置くことで，単にテキストを読むという受動的な活動で終わらせるだけではなく，能動的な活動へと拡張することができる。

このように，追加の課題を置くだけで，受動的な活動で終わってしまうところを，能動的な活動へと拡張することができる。

表6.1 レクチャーとテキストによる学習活動

<table>
<thead>
<tr>
<th>リソース</th>
<th>受動</th>
<th>能動</th>
</tr>
</thead>
<tbody>
<tr>
<td>レクチャー</td>
<td>聞く</td>
<td>質問する反論する</td>
</tr>
<tr>
<td>テキスト</td>
<td>読む</td>
<td>言い換える報告する</td>
</tr>
</tbody>
</table>

グループ討論，実習，ロールプレイ

活動のデザインとして，テキスト，レクチャーというような古典的な方法を使う以外に，もう少し拡張して，グループ討論や実習，ロールプレイといった形態をとる能動的な活動というものもある。

しかし，これらの能動的な活動形態をとりながらも，受動的な活動だけでなく終わってしまうと，アクセスが遅くまちがいもある。たとえば，グループ討論の場においても，他人の意見に同調するだけの人，またはまったく発言しない人にとっては，これらの活動は能動的な学習活動ととなっていない。

実習についても，言われたとおりの手順に従って行うのであれば，「やりました」という体験だけで終わってしまう。そのため，自分でどのように役立つかというところまで到達することができない。たとえば，基礎的な実習科目で行った学習が，卒業研究の際に生かすことができないのであれば，結局は，実習科目で行った学習活動が，受動的な学習で終わっていたのだということになる。
ロールプレイも実習の一形態であり、一種のシミュレーションにより、新しい考え
方や行動を身に付けることができる。しかし、このときも、慣れた役をすすればあまり
意味がないことになる。
こうした学習活動が、能動的な活動となるためには、グループ討論においては同意
するだけ、うなずくだけではなく、反論するという課題を置くなど、グループ討論の
中身の活動を細かくデザインしなければならない。すなわち、能動的な活動に結びつ
くような活動をデザインする必要がある。また、ロールプレイにおいては、男性であ
れば女性を演じるというように、慣れた役をするのではなく、違う役を演じるように
デザインすることで、その活動は能動的な活動となるだろう。
このように、グループ討論、実習、ロールプレイといったような一見能動的な学習
であっても、その中身を細かくデザインしなければ、必ずしも能動的な学習活動が保
証されるものではない。

表6.2 グループ討論、実習、ロールプレイによる学習活動

<table>
<thead>
<tr>
<th>形態</th>
<th>受動</th>
<th>能動</th>
</tr>
</thead>
<tbody>
<tr>
<td>グループ討論</td>
<td>同意する</td>
<td>反論する</td>
</tr>
<tr>
<td>実習</td>
<td>言われたままやる</td>
<td>自分で工夫する</td>
</tr>
<tr>
<td>ロールプレイ</td>
<td>慣れた役</td>
<td>違う役</td>
</tr>
</tbody>
</table>

書く、話す、プレゼンする

書いたり、話したり、プレゼンテーションをするなどの「表現する」という学習形
態は、必ず能動的となる活動である。たとえば「受動的に書く」ことや「受動的に話
す」ということはできない。そのため、表現するという形態は、学習においては、必
ず要所要所に入れる必要がある活動の一形態である。そして、表現するための準備と
なる、「発想する」、「調べる」、「整理する」、「ストーリーを作る」という活動
も受動的ではない。

ただし、表現する活動には時間がかかる。1000～2000字程度のショートレポート
を書くことさえ、1～2週間ほどかかるだろう。大学教育の工夫のひとつとして、講
義時間内にレクチャー、討論などを行い、最終的にショートレポートを書くという
「当日ブリーフレポート形式」というものが実践されている。この方式をとると、講
義の最初から最後まで受講生は能動的な活動を行う必要がある。これは大変ではある
けれども、受講生にとっては実りある授業となるだろう。

しかし、ここでも表現するためには最低90分という時間を必要とする。一方、卒論
を書いていた時には、2年間という年月を必要とする。どのように表現する学習形態は
能動的であり、学習活動において必要な活動ではあるけれども、時間がかかるところ
が欠点といえる。

104
表6.3 書く,話す,プレゼンする

<table>
<thead>
<tr>
<th>形態</th>
<th>能動</th>
</tr>
</thead>
<tbody>
<tr>
<td>書く</td>
<td>発想する,調べる,整理する,ストーリーを作る</td>
</tr>
<tr>
<td>話す</td>
<td></td>
</tr>
<tr>
<td>プレゼンする</td>
<td></td>
</tr>
</tbody>
</table>

これまでに、3つの活動形態について述べてきた。最初に、テキスト、レクチャーといった受動的と捉えられがちではあるけれども、能動的に行うこともできる活動、次に、討論、実習といった能動を引き出す活動、最後に、表現するという必ず能動的になる活動、以上の3つである。

活動のデザインとは、これら3つの異なる形態の活動を組み合わせ、それぞれの長所を利用してながらデザインすることにほかならない。

短い時間に大量の知識を得ることができるレクチャーやテキストは導入には必要である。グループ討論や実習は、得た知識を自己の中で消化して、新しいものを生み出すと言う意味で、コースの中間地点で入れるべき活動である。そしてまとめとして、レポートを書く、話す、プレゼンするという能動的な活動形態は、最後に入れる課題になるだろう。

インストラクションをデザインする人の課題は、このように多様な活動のパートリーを持ち、それらをどのように配置していくかということに心を砕き、時間分割、試行錯誤を繰り返しながらデザインしていくことである。

6.4 フィードバックのデザイン

フィードバックの重要性

学習活動において、学習者が何らかのアクションをしたとき、教え手が、そのアクションに対して何らかのリアクションを返すこと、これをフィードバックと呼ぶ。

インストラクションデザインにおいて、フィードバックのデザインは非常に重要である。なぜなら、もしフィードバックがなければ、学び手は自分が適切に学んでいるかどうかを知るすべがないからである。何かを学習するときに、コメントや評価をもらわなければ、次にどうすればよいのか学び手はわからない。うまくできたことを喜ぼうので、正しく学び直さなければならないのか、その判断材料がないからである。そのために、フィードバックは重要となる。学習活動をデザインするときには、それに対してどのようなフィードバックをするかを、常に考えておかなければならない。
フィードバックの3つの働き

一口にフィードバックと言っても、いくつかの働きがある。それは、その背景とし
ての心理学理論がいくつかあり、この背景が異なることによって、フィードバックの働
きが変わってくるからである。ここでいう心理学理論とは、これまでに学んだ、行動
分析学の考え方、認知心理学の考え方、状況的学習論の考え方を指している。

たとえば、学び手が与えられた課題をこなしたときに、教え手から「よくできまし
た」というフィードバックを受けたとしよう。このとき、このフィードバックによっ
て、「次もがんばろう」という気持ちになったとすれば、これは「強化」されたとい
うことである。あるいは、「課題を解くときに迷ったけれども、この考え方で正し
かったんだ」と思ったとすれば、これは「情報」を受け取ったということになるだろ
う。さらに、「この先生はうまくやっていくそうだね」と思ったとすれば、これは
フィードバックが「コミュニケーション」として働いたということになるだろう。

以上のように、行動分析学的には、フィードバックは「強化」としての役割が大き
い。また、認知心理学的には、「情報」としての役割が大きい。そして、状況的学習
論的には、「コミュニケーション」としての役割が大きい。以下に、それぞれ見て
いく。

表6.4 フィードバックの3つの働き

<table>
<thead>
<tr>
<th></th>
<th>フィードバック</th>
<th>背景</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>強化としての</td>
<td>行動分析学</td>
</tr>
<tr>
<td>2</td>
<td>情報としての</td>
<td>認知心理学</td>
</tr>
<tr>
<td>3</td>
<td>コミュニケーションとしての</td>
<td>状況的学習論</td>
</tr>
</tbody>
</table>

強化としてのフィードバック

強化としてのフィードバックとは、行動分析学的な考えによるものである。その人
が何らかのアクションをしたときに、環境に変化が起こり、それによりその後の行動
が強化、または弱化される。これを行動連伴性と呼んだ。フィードバックすることで、
その後の学び手の行動頻度が制御されるとすれば、これは強化（または弱化）と
してのフィードバックをしていることになる。

情報としてのフィードバック

では、認知心理学的な考えはどうだろうか。この場合のフィードバックとは、環
境、または相手から「情報」として受け取るものである。何らかのアクションをした
ときに、それがよかったのか、悪かったのか、または別の方法をとるべきかという情
報を与えるものがフィードバックということになる。

コミュニケーションとしてのフィードバック

最後に、状況的学習論の見方によれば、フィードバックは教え手と学び手との間の
コミュニケーションをになっていると考えられる。もちろん、そこでは、強化（弱
化）としても、情報としてもフィードバックは働いている。しかし、それと並行して、
人間関係を形成するようなコミュニケーションが行われているのである。

実際のフィードバックのデザイン
次に、それぞれの見方にフィードバックのデザインを考えてみよう。

強化としてのフィードバックのデザイン
この場合は、できるだけ早い時期の、即時フィードバックが重要である。その行動
が適切であるか、あるいは不適切かを即時にフィードバックする。学習場面において
は、望ましい行動を増やすか、問題行動を減らすかの２つのためにフィードバックす
る。もし、まったくフィードバックがなければ、行動は次第に消去されていくだろ
う。

情報としてのフィードバックのデザイン
情報としてのフィードバックは、KR（Knowledge of Result）という考え方に基づ
いている。KR情報とは、「結果についての知識」すなわち「あなたの出した結果に対
する知識」である。
KR情報では、結果だけを知らせることなく、説明や解説を付けて加える。正解だっ
た場合でも、付加的な情報を加えれば、学び手がより一層の興味を持つ可能性が高
くなる。また、自信がないままの解答が、正解であった場合は、説明を見ること
で、正解の意味をより深く理解するだろう。
このように、単に結果の情報を伝えるだけではなく、説明フィードバックを付加す
ることで、情報としてのフィードバックの質が高くなる。これは、学習によって得られ
た知識の精緻化、体験化が、説明フィードバックにより促進されて、知識がより確か
なものとなり、学習者が自信をもって先に進むことができるからである。すなわち、
情報としてのフィードバックにおいては、正誤ではなく、助言やコメントを与える
ことが重要となる。

コミュニケーションとしてのフィードバックのデザイン
コミュニケーションとしてのフィードバックとは、個々のアクションに対するフィー
ドバックではなく、主に、学習全体に対するフィードバックのことを指す。長期間に渡
る学習コースがデザインされているときには、学習者自身が、自分の学び方はこれで
よいのかという疑問や、自分の学習状況に対する不安が出てくることがある。そのよ
うなときに、疑問や不安をアクションとして捉え、それに対するコミュニケーション
的なフィードバックがデザインされていることが望ましい。
しかし、学び手から何らかのアクションがないとこのフィードバックは成立しな
い。そのため、学び手に対して「学習はうまくいっていますか」、「不安はないです
か」などのように折にふれて聞くように、デザインとして加えることが必要となる。
表6.5 3種類のフィードバックのデザイン

<table>
<thead>
<tr>
<th></th>
<th>フィードバック</th>
<th>デザイン</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>強化としての</td>
<td>・できるだけ即時に</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・その行動が適切かそうでないかを</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・フィードバックされない行動は消去される</td>
</tr>
<tr>
<td>2</td>
<td>情報としての</td>
<td>・KR=Knowledge of Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・説明フィードバック</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・精緻化・体制化を助ける</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・正誤だけでなく、助言やコメントを</td>
</tr>
<tr>
<td>3</td>
<td>コミュニケーションとしての</td>
<td>・学習全体に対しての助言やコメント</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・この学び方でよいのかどうか</td>
</tr>
</tbody>
</table>

6.5 エピローグ

リソース、活動、フィードバックの設計について学びました。
おっと、その前に導入の設計ね。
『教え手はもう表舞台には立たない』という割には、ラボールの形成なんてことをおっしゃるのですね。
そりゃ、そうだ。もちろん教え手は表舞台には立たない。だけど、どういう意図を持って、
今教えようとしていることを教えているのかということは、確実に学び手に伝えなければならない。
そして、それは、表舞台に立たなくてもできることなのだよ。
どういうことですか？
リソース、活動、フィードバックの設計自体がそれを語るわけだ。
なるほど、そこに意図が表現されている、と。
逆に言えば、そこにしか表現の場はないよ。口でどんなに志の高いことを言ったとしても、
コースの設計と実施だが、現実なんだから。
そこで勝負しろ、と。
もちろん。
フィードバックのところで気づいたのですが、「がんばれ！」のような励ましは、
動機づけではないのですね。
「がんばれ！」と言われてやる気が出るのなら、あまり苦労はないね。
そういえば、そうです。
「がんばれ！」のような励ましは、むしろコミュニケーションとしてのフィードバックとして
とらえたほうがいいだろうね。「私はあなたのことを見守っていますよ」ということを学び手
に伝えているわけだ。
—あ、見てくれているんだってことですね。
だから、内容は何もない、強化でもないし、情報でもない。そうするとコミュニケーションということになる。
—コミュニケーションとはいっても、あいさつ程度のものですよね。
そんな感じかな。通常は、ひとつのフィードバックでも、強化の側面、情報の側面、コミュニケーションの側面が複合的に絡み合っている。
—それはちょっと面倒ですね。
さらには、同じフィードバックをしても、どの側面を選択してとらえるかは、学び手によって、変わってくるからね。
—さらにややこしくなる！
だから、フィードバックの性格を明示するのがいいだろうね。これは強化なのか、情報なのか、コミュニケーションなのかということを明示する。
できるですか？
できるだけ明確にする、対面するにしても、オンラインするにしてもね。

■ホームワーク6

ホームワーク5で設計したコースを元にして、その中の任意の1セッションのインストラクション（時間は60分程度）について設計してください。全体で800字〜1000字で記述してください。見出しは、以下の通りとします。適宜、段落を変えてもください。

タイトル：（どんな人）に、（どんな技能）を、（どれくらいの時間で）教えるコースの中の（教える内容）のセッションの設計
・（タイトルの例）新入生にコースナビの使い方を3時間で教えるコースの中の第1回目「BBSの使い方を教える」のセッションの設計

1. 導入
2. リソース
3. 学習活動
4. フィードバック

(1) 導入（25点）
このセッションを開始するにあたっての導入部分を設計してください。教え手が実際に話す内容を書いてください。話し言葉でもかまいません。ラボールの形成、方向づけ、動機づけが含まれるようにしてください。
(2) リソース（25点）

このセッションで、どのような種類のリソースを用いるのか、そして、その中身の具体的なデザインについて記述してください。また、なぜそのようなリソースを選択したのかの根拠も書いてください。

(3) 学習活動（25点）

このセッションで、どのような学習活動を行うのか、そして、その中身の具体的なデザインについて記述してください。また、なぜそのような学習活動を選択したのかの根拠も書いてください。

(4) フィードバック（25点）

このセッションで行う学習活動に対して、どのようなフィードバックをするのかについて記述してください。また、そのフィードバックの働きについて記述してください。
7. 評価の設計

7.0 プロローグ

——アイダさん、こんにちは。
やあ、ヤマモトくん。
——前回は、リソースと活動とフィードバックの設計をやりました。
いよいよ、今回で終わりだよ。
——もう、終わりですか。なんだか長かったような、短かったような。
今回は評価の設計をやろう。
——うわっ、評価ですか～。イヤだな～。
まあ確かに、誰かに自分が評価されるのが好きな人はいない。でも、かといって、まったく評価なしにインストラクションが終わってしまったらどうだろう？
——自分ができるようになったかどうかが確認できないから、張り合いがないかもしれないですね。
そうだろうね、さらにいえば、IDでいう評価とは、学習者のパフォーマンスを評価するということだけじゃない。
——と思いますと？
学習コース自体を評価することが大切なんだ。
——学習コース自体の評価ですか、誰がそれをするんですか？
コースを作った人自身、コースを受講した学習者、それから、そのコースを採用するかどうかを決める立場にある人だ。
——それはいいですね、いつも学習者だけが評価されるのは不公正ですから。
もし学習者がうまくできなかったとすれば、それは何か原因かということだ。
——それは、学習者のせいじゃないんですか？サポったとか、やる気がなかったとか。
そういう場合もあるだろう。同時に、学習コースが学習者のやる気をうまく引き出せなかった、という可能性もあるわけだ。
——なるほど、それで学習コースの評価なんですね。
学習コースの評価がなければ、改善もできないからね。
7.1 IDにおける評価

評価の二面性

評価には2つの側面がある。1つ目は、学習者が最終的にできるようになったというパフォーマンスを評価することである。テストをしたり，実際のパフォーマンスを
実演してもらう。

2つ目は，その学習コースが，学習者のパフォーマンスを伸ばすコースであったかどうかを評価することである。つまり，これは学習者の評価ではなくコースの評価に
当たる。これが，インストラクショナルデザインにおける評価の特徴である。

学習者の評価は学習者のために行う。学習者がゴールを達成できない場合はコース
に問題がなかったか，あるいは改善すべき点がなかったかを検討する。もちろん，学
習者がやる気がなかったり，動機づけが十分でなかったりする場合もあるだろう。も
し学習者にやる気がなかった場合は，その学習者に学ぶことへのニーズを意識させる
ような介入をする必要がある。また，その学習者にそもそもニーズがないのであれば，コースに入ってくる前に排除しなければならない。

学習者検証の原則

コースは，学習者の学習成果そのものによって評価される。これを「学習者検証の
原則」と呼ぶ。

学習者のパフォーマンスによって
コースを評価，改善する
パフォーマンス

図7.1 学習者検証の原則

専門家はよく「これはすばらしいコースです」と言ったりする。あるいは「授業中
の学習者の目が輝いていたね」と言うこともあるだろう。しかし，本当のところ，
学生が面白そうな振りをしていただけであったとすれば，このコースは素晴らしい
コースとはいえないだろう。

学習者の反応と成果こそが，コースの評価となる。したがって，たとえ専門家が賞
賛したとしても，学習者に成果が生まれなかったとしたら貌まねコースなのである。
コースの良さは第三者としての専門家が決めるのではなく，コースを受けた学習者自
身が決める。
「百まず計画は子どもを機械にするものだ。断固反対！」という専門家がいたとしよう。ところが、実際に百まず計画をやっている子どもが「百まず計画で少し自信がついたよ。うれしいな」と言ったとすれば、その評価を第一に考えなくてはならない。専門家が「子どもを機械にする」と主張するのは第三者の意見にすぎない。専門家は、まず当事者である子どもに聞くべきなのである。

学習者がどのような成果を上げたかということを第一に評価するのが、学習者検証の原則である。

ニュース分析で既に学習したように、どのようなコースを作るかということに関しては学習者のニーズから出発するのが基本である。しかし、それ以外にも組織のニーズ、社会のニーズ、領域専門家のニーズがある。組織のニーズや社会のニーズや領域専門家からのニーズでコースを作った場合でも、学習者検証の原則は貫き通すべきである。学習者がどのような成果を上げたかということだけでそのコースの評価をする。そうすれば良いコースが生き残り、そうでないコースは淘汰されていくだろう。

7.2 学習成果の測定

転移課題的重要性

学習成果の測定では、まず、コースの中で練習したことをテストする。次に、コースの内容が習得されていればできるだろうと期待される応用課題によってテストする。これは、認知心理学で言う「転移」をテストすることにはならない。転移というのはある領域で獲得された知識や技能が別の状況や場面において活用できることである。

実際、私たちがいろいろなことを学ぶのは、それが別の場面にも転移できるということを期待している。コースの中では100%上手くできても、コースの外、つまり現実社会においてその内容が活用されないのであれば、何を学んだのかということになるだろう。あらゆるコースは、そのコースの中で上手くできるということを期待していると同時に、コースの外に出たときも上手くできるようになって欲しいという願いの方に作られている。したがって、転移がないということはそのコースがうまく設計されていないということである。転移がうまくいくようなコースを作るためにも、応用課題でテストをして、実際に転移が起こっているかどうかを確認することが必要である。

一方、コースで扱っていない内容をテストするのはタブーである。転移課題ではない、まったく別の内容をテストすることはやってはいけない。なぜならば、それは学習者を裏切っていることになるからである。学習者がきちんと学習をしていれば、適切な評価を得られるようなテストを作らなければならない。もし、コースと関係ないことを突然テストしたとすれば、学習者は面食らうだろうし、さらには教え手への信頼を失うことになるだろう。
測定の文脈

どのような文脈でテストするかを考えたときに、理想的には、パフォーマンスコンテキストに近い形でのテストをするのがよい。たとえば、2分間スピーチの最終的なテストは、2分間スピーチを聴衆の目の前で実際にデモンストレーションしてもらうという形のテストはよいだろう、もし、これを、ビデオを前にして1人で2分間スピーチをしてもらうとすると、ゴールからは少しずれることになる。これはユニコ
タクトも測れないし、実際に大勢の聴衆がいる前でドキドキしながらスピーチするというリアルな文脈で行うスピーチとは違ってくる。できるだけ実際に行われる文脈に近い形でのテストをするのがよいということになる。

このような評価をオーセンティックな評価と呼ぶ。オーセンティック(authentic)と
いうのは、実際の正統的な行動とマッチするような形で評価をするということであ
る。

オーセンティックではない評価はどのようなものかというと、〇×問題や穴埋め問題
といったような、いわゆるペーパーテストがあげられる。〇×問題や穴埋め問題は、現
実の社会や生活の中には出てこない。実際の仕事の中で紙を配られ、穴埋め問題を解
くということはないのである。

図7.2 オーセンティックなテスト

それでもなぜそのような人工的なテストをするかというと、採点が楽であり、公平
だからという理由によっている。しかし、2分間スピーチのトレーニングを行った後
には〇×問題を作ろうとは思わないだろう。2分間スピーチのトレーニングを行った後
は、2分間スピーチのテストを行うのがオーセンティックな評価なのだから。

もし短時間でパフォーマンスを見ることができない場合には、ポートフォリオ
(portfolio、書類の束という意味)として、その人がそれまでにやった課題、レポート
・作品などを集めて一つの書類の束にして、それを全体として評価する。

パフォーマンス評価もポートフォリオ評価も最終的にはオーセンティックな評価を
目指している。もしポートフォリオ評価が広く使われるようになってくれば、試験一
発で評価を決めるということが廃れがシステムだと考えるようになるだろう。60分
程度の〇×式や穴埋め式の人工的な形での試験によって評価することが、どれほど信頼
できるものかどうかということが問われるようになるだろう。ましてや長期間に渡っ
テストのウォッシュバック効果

テストがどのようなものであるかが明示されると、そのことによって逆流が起こる。つまり、最後に受けるテストが、その前の学習活動へ逆波及していく。

典型的な例では、センター試験などの国家的規模で試験が行われる場合、試験でどのような問題が出題されるか、形式はどのようなものであるかということが全ての高校生の学習活動に逆波及する。そして、最終的にはセンター試験で良い点をとれるような学習法を高校生が選ぶようになる。

したがって、学校の中でどのような勉強法がよいのかという伝統的な文化とは別に、センター試験対策に有利な勉強法が波及していく。それは、しばしば学校の中で勉強法と食い違う。このように、高校の教員はこのウォッシュバック効果を無視するわけにはいかない。教員独自の流儀で教えていることが、センター試験にあまり役に立たないとならば、生徒からは不評を買うことになるだろう。まさにこれがテストのウォッシュバック効果なのである。

テストはテストに過ぎないので、逆波及して勉強の仕方を変えてしまうという効果がある。最後のテストをどのような形と内容で行うかということは、この意味でも非常に重要になる。その意味でも、インストラクショナルデザインではオーセンティックな評価をしようということを考えている。

テスト形式が学び方に影響する

図7.3 テストのウォッシュバック効果
7.3 学習体験の測定

学習体験の測定では、学習者の評価ではなく、学習体験の測定をすることによりコースの良さを測定する。その枠組みとして役立つのが、J. M. Kellerが提倡している「ARCS動機づけモデル」である。これを利用することで、コースの魅力を測定しようとする。

ARCS動機づけモデル

「ARCS」は、Attention（注意）、Relevance（関連性）、Confidence（自信）、Satisfaction（満足感）の頭文字をとったものである。

![ARCS動機づけモデル](image)

図7.4 ARCS動機づけモデル

Attentionは、学習者の注意を引き、興味を引き出すようなコースになっているか、つまり「おもしろそうだ」と思わせるコースになっているかということである。まず話をきいてもらうために注意を引くために重要である。関連性は、学習者が自分の役に立ちそうだと思わせること、つまり、学習者の役に立つように学びが生活や仕事と関連があるかを説明していくことが重要である。関連性は、学習者が「役に立つ」と思わせることによって、今学んでいることへの動機づけを高める。

Relevanceは、関連性である。何の関連性かというと、自分自身とそのコースの内容の関連性である。コースの内容が自分の役に立ちそうだと思わせること、つまり、そのコースがどのように学び手自身の生活や仕事とどう関連があるかを説明していくことが重要である。学び手に「役に立ちそうだと思う」という役に立つことが、今学んでいることの関連性によって、今学んでいることが動機づけを高める。

Confidenceは、自信である。学習者の自信を上げ、うまくできそうだという感じを持たせているかということである。教え方は、学び手がコースの終了後に「やればできそうだ」という感じを持たせたい。実際には難しいコースをなんとかこなした末に「やっぱりできない」と思わせるコースもある。しかし、できたら明るい希望を持って、そのコースを終えてほしいと思う。たとえ、今回はあまりパフォーマンスは発揮できなかったとしても、この調子でやっていければできそうだ、という感覚で終わりたい。
Satisfactionは満足感である。学習体験を通じて満足感を持ったか、最後に「やってよかったな」と思うことである。どのくらい自信が持っていたかは、テストをしても出てこない。しかし、「やってよかった」いう満足感は、コースの設計者としては常に気にすべきことである。

コースの改善

もし「おもしろくない」、「役に立たない」、「自信が持てない」、「やってよかったと思わないうるような評価を受ければ、コースを改善しなければならない。ARCSの4つの観点で調べていくと、どこが良くなかったのがわかる。

たとえば「おもしろそうだな」という評価が低ければ、おもしろい話題を入れていく。「役に立ちそうだ」という評価が低ければ、教えている内容と現実社会との関連性を強調する。自信の評価が低ければ、課題が難しそうだったのかどうかをチェックする。満足感の評価が低い場合は、レクチャーばかりを聴いているだけで、あまり活動がなく、最後にレポートを1つ出しても終わるようなコースが多い。そのようなコースに対しては、練習を多くしたり、小さな課題を出し対して適切なフィードバックをするのが難しい。満足度は上がる。

このような、「ARCS」の4つの観点で評価を測定し、それによって改善の方向性を見いだすことができる。

7.4 態度の変化の測定

副産物としての態度の変化

運動技能や認知技能が、直接的な学習成果として設定されていたとしても、その副産物として、学習者の態度が変化することがある。これはそのコースで獲得された運動技能や認知技能以外に獲得されたものとして測定しておく必要がある。

たとえば、あるコースをやって、確かに技能としてはできるようになったけれども、そのコースで扱っていた内容が「嫌い」になるようなケースがある。また逆に、必ずしも完璧にできるような場合にはならなかったけれども、そのことが「好き」になったというケースもある。

「できるけど、嫌い」の意味

学校の教科の国際評価の調査結果を見ると、日本では外国に比較して、算数・数学は「できるけど、嫌い」と答える割合が非常に多い。科目の内容がわかるならば、その科目が好かれるのが普通であろう。つまり、「できる」と「好き」は比例関係にあるはずなのに、「できるけど、嫌い」であるのは不思議だ。しかし日本では、算数・数学でそのような傾向が顕著なのである。
おそらくこれは、トレーニングを受けたために、できるようになったが、トレーニングの過程で押し付けられたようなことが起こり、その結果として、嫌いになったということなのだろう。

インストラクショナルデザインの視点で見れば、この現象は良くないといえる。もし、できるようになったとしても、態度としてそれが嫌いになったとすれば、将来に渡ってその内容を避けるという傾向になるからである。それは、長期に渡って、その人の選択肢が狭まったという意味で不利になるだろう。また、その内容を避けるようになったことにより、自分のキャリアに対して不利になることもあるだろう。教えた結果として、ただその内容ができるようになればよいのかとすると、そんなことはないということをここで強調しておきたい。

7.5 エピローグ

——「学習者検証の原則」はすごいですね。
まさにインストラクショナルデザイン的な考え方だね。

——教える仕事の人はみんなこれでやってほしいです。
そうだね。コースや授業はそれだけで成立しているわけではない。学習者をどう変えるかということから設計が始まり、結果として学習者がどう変わったかということだけでそのコースの良さが測られるんだ。

——その明確さがすごいです。
ここはっきりさせておかないと、コースはそれを作った人の自己満足で終わってしまう危険性が大きいからね。

——最初の頃に出てきた「意図的教育観」と「成功的教育観」ですね。
そうだ。誰でも良いコースを作ろうと思って設計する。それは確かに。しかし、それが本当に良いコースであるかどうかは、学習者がコースの中で「成功」したかどうかだけで、評価されるわけだね。

——厳しいですね。
厳しい。でも、そうしないとコースは良くならない。いつまでも、学習者がさぼるとか、不真面目だとか、やる気がないだとか言っているは何の改善もない。そうならないためには、どうしたらよいのかということが、まさに私たちの仕事なんだよ。

——本当に「教える」という仕事は奥が深いですね！
だから、やりがいがある。

——そうですね。うまく教えられたときは、本当にうれしいです。

同じように、学び手もよろこんでいるはずです。

——確かに。

教える人も、学ぶ人も、双方が喜びを感じるような、そういう体験をみんながするようになれば、よい社会になっていくだろうね。
■ホ固体ワーク7

ホームワーク5で設計したコースの評価について設計してください。全体で600字～800字で記述してください。見出しは、以下の通りとします。適宜、段落を変えてください。

タイトル：（どんな人）に、（どんな技能）を、（どれくらいの時間で）教えるコースの評価の設計

1. 学習成果の測定
2. 学習体験の測定
3. 態度の変化の測定

(1) 学習成果の測定（50点）
コースが終わった時点での、学習成果の測定について記述してください。具体的な出題内容とコンテキストについて記述してください。

(2) 学習体験の測定（30点）
学習体験を測定するために、ARCS動機づけモデルを援用して、どのような評価を行うのかについて記述してください。具体的なアンケートの項目について記述してください。

(3) 態度の変化の測定（20点）
態度の変化を測定するために、どのような評価を行うのかについて記述してください。具体的な測定方法について記述してください。
インストラクショナルデザイン
—教えることの科学と技術—

2012年3月31日 発行

著者 向後千春
発行 早稲田大学人間科学学術院 向後研究室
〒359-1192 埼玉県所沢市三ヶ島2-579-15
電話 04-2947-6844（直通）
印刷 （株）トライ・エックス MDコーナー

(C) KogoLab 2012